PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Nanobiotechnology in reproduction – pros and cons. A review

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The phenomenal development of nanobiotechnology in the twenty-first century has opened the door to exciting progress in medical nanoapplications. Nanotechnology promises a revolution in medicine to improve or create novel therapies in such areas as reproduction. Nanomaterials are used as active agents, drug delivery systems, and diagnostic molecules to treat and prevent diseases at the systemic, cellular and molecular level. Such broad implementation of nanoobjects is possible due to their unique properties resulting from their extremely small size. In this mini-review we discuss documented predictions and concerns associated with intentional or unintentional application of or exposure to nanostructures in reproduction and embryogenesis.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.179-192,fig.,ref.

Twórcy

  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland
autor
  • The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jablonna, Poland

Bibliografia

  • Ahn R.W., Barrett S.L., Raja M.R. et al., 2013. Nano-encapsulation of arsenic trioxide enhances efficacy against murine lymphoma model while minimizing its impact on ovarian reserve in vitro and in vivo. PloS One 8, e58491, doi: 10.1371/journal.pone.0058491
  • Albanese A., Tang P.S., Chan W.C.W, 2012. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16
  • Ali H., Kilic G., Vincent K., Motamedi M., Rytting E., 2013. Nanomedicine for uterine leiomyoma therapy. Ther. Deliv. 4, 161–175 Amin M., Anwar F., Janjua M.R.S.A., Iqbal M.A., Rashid U., 2012. Green synthesis of silver nanoparticles through reduction with Solanum xanthocarpum L. berry extract: characterization, antimicrobial and urease inhibitory activities against Helicobacter pylori. Int. J. Mol. Sci. 13, 9923–9941
  • Ashby M.F., Ferreira P.J., Schodek D.L. (Editors), 2009. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects. Elsevier, Butterworth-Heinemann. Oxford (UK)
  • Ballarín-González B., Howard K.A., 2012. Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. Adv. Drug. Deliv. Rev. 64, 1717–1729
  • Bansod S., Bonde S., Tiwari V., Bawaskar M., Deshmukh S., Gaikwad S., Gade A., Rai M., 2013. Bioconjugation of gold and silver nanoparticles synthesized by Fusarium oxysporum and their use in rapid identification of Candida species by using bioconjugate-nano-polymerase chain reaction. J. Biomed. Nanotechnol. 9, 1962–1971
  • Barchanski A., Taylor U., Klein S., Petersen S., Rath D., Barcikowski S., 2011. Golden perspective: application of laser-generated gold nanoparticle conjugates in reproductive biology. Reprod. Domest. Anim. 46, Suppl. 3, 42–52
  • Barkalina N., Charalambous C., Jones C., Coward K., 2014a. Nanotechnology in reproductive medicine: Emerging applications of nanomaterials. Nanomed. Nanotechnol. Biol. Med. 10, 921–938
  • Barkalina N., Jones C., Kashir J., Coote S., Huang X., Morrison R., Townley H., Coward K., 2014b. Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro. Nanomed. Nanotechnol. Biol. Med. 10, 859–870
  • Bernstein D.I., Stanberry L.R., Sacks S. et al., 2003. Evaluations of unformulated and formulated dendrimer-based microbicide candidates in mouse and guinea pig models of genital herpes. Antimicrob. Agents. Chemother. 47, 3784–3788
  • Bhabra G., Sood A., Fisher B. et al., 2009. Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotechnol. 4, 876–883
  • Binnig G., Quate C.F., Gerber C., 1986. Atomic force microscope. Physiol. Rev. Lett. 56, 930–933
  • Binnig G., Rohrer H., 1982. Scanning tunneling microscopy. Helv. Phys. Acta 55, 726–735
  • Browning L.M., Lee K.J., Huang T., Nallathamby P.D., Lowman J.E., Xu X.H., 2009. Random walk of single gold nanoparticles in zebrafish embryos leading to stochastic toxic effects on embryonic developments. Nanoscale 1, 138–152
  • Campos V.F., de Leon P.M.M., Komninou E.R., Dellagostin O.A., Deschamps J.C., Seixas F.K., Collares T., 2011a. NanoSMGT: transgene transmission into bovine embryos using halloysite clay nanotubes or nanopolymer to improve transfection efficiency. Theriogenology 76, 1552–1560
  • Campos V.F., Komninou E.R., Urtiaga G., de Leon P.M., Seixas F.K., Dellagostin O.A., Deschamps J.C., Collares T., 2011b. NanoSMGT: transfection of exogenous DNA on sex-sorted bovine sperm using nanopolymer. Theriogenology 75, 1476–1481
  • Canovas S., Gutierrez-Adan A., Gadea J., 2010. Effect of exogenous DNA on bovine sperm functionality using the sperm mediated gene transfer (SMGT) technique. Mol. Reprod. Dev. 77, 687–698
  • Cao G., Wang Y. (Editors), 2011. Nanostructures and Nanomaterials: Synthesis, Properties, and Applications. 2nd Edition. World Scientific Publishing Co. Pte Ltd. Singapore, pp. 581
  • Celardo I., Pedersen J.Z., Traversa E., Ghibelli L., 2011. Pharmacological potential of cerium oxide nanoparticles. Nanoscale 3, 1411–1420
  • Chattopadhyay P.K., Perfetto S.P., Yu J., Roederer M., 2010. The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 334–348
  • Das S., Singh S., Dowding J.M. et al., 2012. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials 33, 7746–7755
  • de Oliveira R., Zhao P., Li N., de Santa Maria L.C., Vergnaud J., Ruiz J., Astruc D., Barratt G., 2013. Synthesis and in vitro studies of gold nanoparticles loaded with docetaxel. Int. J. Pharm. 454, 703–711
  • Díaz M.R., Vivas-Mejia P.E., 2013. Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals 6, 1361–1380
  • Dragovic R.A., Gardiner C., Brooks A.S. et al., 2011. Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis. Nanomedicine 7, 780–788
  • Dziendzikowska K., Gromadzka-Ostrowska J., Lankoff A. et al., 2012. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J. Appl. Toxicol. 32, 920–928
  • Emerich D.F., 2005. Nanomedicine - prospective therapeutic and diagnostic applications. Expert. Opin. Biol. Ther. 5, 1–5
  • Fairley S.J., Singh S.R., Yilma A.N., Waffo A.B., Subbarayan P., Dixit S., Taha M.A., Cambridge C.D., Dennis V.A., 2013. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int. J. Nanomed. 8, 2085–2099
  • Faraji A.H., Wipf P., 2009. Nanoparticles in cellular drug delivery. Bioorganic. Med. Chem. 17, 2950–2962
  • Feugang J.M., Youngblood R.C., Greene J.M., Fahad A.S., Monroe W.A., Willard S.T., Ryan P.L., 2012. Application of quantum dot nanoparticles for potential non-invasive bio-imaging of mammalian spermatozoa. J. Nanobiotechnol. 10, 45, doi:10.1186/1477-3155-10-45
  • Feynman R.P., 1960. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36
  • Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811
  • Foye O.T., Uni Z., McMurtry J.P., Ferket P.R., 2006. The effects of amniotic nutrient administration,“In ovo Feeding” of arginine and/or ß-hydroxy-ß-methyl butyrate (HMB) on insulin-like growth factors, energy metabolism and growth in Turkey poults. Int. J. Poultry Sci. 5, 309–317
  • Fragouli E., Wells D., 2012. Aneuploidy screening for embryo selection. Semin. Reprod. Med. 30, 289–301
  • Fynewever T.L., Agcaoili E.S., Jacobson J.D., Patton W.C., Chan P.J., 2007. In vitro tagging of embryos with nanoparticles. J. Assist. Reprod. Genet. 24, 61–65
  • Gao G., Ze Y., Li B. et al., 2012. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J. Hazard. Mater. 243, 19–27
  • Gao G., Ze Y., Zhao X. et al., 2013. Titanium dioxide nanoparticle-induced testicular damage, spermatogenesis suppression, and gene expression alterations in male mice. J. Hazard. Mater. 258–259, 133–143
  • Gao X., Yin S., Tang M., 2011. Effects of developmental exposure to TiO2 nanoparticles on synaptic plasticity in hippocampal dentate gyrus area: an in vivo study in anesthetized rats. Biol. Trace Elem. Res. 143, 1616–1628
  • Garcia T.X., Costa G.M., França L.R., Hofmann M.C., 2014. Subacute intravenous administration of silver nanoparticles in male mice alters Leydig cell function and testosterone levels. Reprod. Toxicol. 45, 59–70
  • Gercel-Taylor C., Atay S., Tullis R.H., Kesimer M., Taylor D.D., 2012. Nanoparticle analysis of circulating cell-derived vesicles in ovarian cancer patients. Anal. Biochem. 428, 44–53
  • Ghosh P., Han G., De M., Kim C.K., Rotello V.M., 2008. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60, 1307–1315
  • Grodzik M., Sawosz F., Sawosz E., Hotowy A., Wierzbicki M., Kutwin M., Jaworski S., Chwalibog A., 2013. Nano-nutrition of chicken embryos. The effect of in ovo administration of diamond nanoparticles and L-glutamine on molecular responses in chicken embryo pectoral muscles. Int. J. Mol. Sci. 14, 23033–23044
  • Gusić N., Ivković A., VaFaye J., Vukasović A., Ivković J., Hudetz D., Janković S., 2014. Nanobiotechnology and bone regeneration: a mini-review. Int. Orthop. 38, 1877–1884
  • Hariharan S., Bhardwaj V., Bala I., Sitterberg J., Bakowsky U., Ravi Kumar M.N.V., 2006. Design of estradiol loaded PLGA nanoparticulate formulations: a potential oral delivery system for hormone therapy. Pharmaceut. Res. 23, 184–195
  • Herman A., Herman A.P., 2014. Nanoparticles as antimicrobial agents: their toxicity and mechanisms of action. J. Nanosci. Nanotechnol. 14, 946–957
  • Hou J., Wan X.Y., Wang F., Xu G.F., Liu Z., Zhang T.B., 2009. Effects of titanium dioxide nanoparticles on development and maturation of rat preantral follicle in vitro (in Chinease). Acad. J. Second Mil. Med. Univ. 29, 869–873
  • Hougaard K.S., Jackson P., Jensen K.A. et al., 2010. Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan). A study in mice. Part. Fibre Toxicol. 7, 16, doi:10.1186/1743-8977-7-16
  • Jiang J., Oberdörster G., Biswas P., 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J. Nanopart. Res. 11, 77–89
  • Kaitu’u-Lino T.J., Pattison S., Ye L. et al., 2013. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology 154, 911–919
  • Kale R.D., Chet Ram Meena, 2012. Synthesis of titanium dioxide nanoparticles and application on nylon fabric using layer by layer technique for antimicrobial property. Adv. Appl. Sci. Res. 3, 3073–3080
  • Kamphuis E.I., Bhattacharya S., van der Veen F., Mol B.W.J., Templeton A., 2014. Are we overusing IVF?. BMJ 348, g 252, doi:10.1136/bmj.g252
  • Kim T.S., Lee S.H., Gang G.T., Lee Y.S., Kim S.U., Koo D.B., Shin M.Y., Park C.K., Lee DS., 2010. Exogenous DNA uptake of boar spermatozoa by a magnetic nanoparticle vector system. Reprod. Domest. Anim. 45, e201–e206
  • Kohli V., Elezzabi A.Y., 2009. Prospects and developments in cell and embryo laser nanosurgery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 11–25
  • Koopmans R.J., Aggeli A., 2010. Nanobiotechnology—quo vadis? Curr. Opin. Microbiol. 13, 327–334
  • Kulvietis V., Zalgeviciene V., Didziapetriene J., Rotomskis R., 2011. Transport of nanoparticles through the placental barrier. Tohoku J. Exp. Med. 225, 225–234
  • Kurantowicz N., Sawosz E., Jaworski S. et al., 2015. Interaction of graphene family materials with Listeria cytogenes and Salmonella enterica. Nanoscale Res. Lett. 10, 23, doi:10.1186/s11671-015-0749-y
  • Laban G., Nies L.F., Turco R.F., Bickham J.W., Sepúlveda M.S., 2010. The effects of silver nanoparticles on fathead minnow (Pimephales promelas) embryos. Ecotoxicology 19, 185–195
  • Le Broc-Ryckewaert D., Carpentier R., Lipka E., Daher S., Vaccher C., Betbeder D., Furman C., 2013. Development of innovative paclitaxel-loaded small PLGA nanoparticles: Study of their antiproliferative activity and their molecular interactions on prostatic cancer cells. Int. J. Pharm. 454, 712–719
  • Lee H.J., Lee H.J., Lee J.M., Chang Y., Woo S.T., 2012. Ultrasmall superparamagnetic iron oxides enhanced MR imaging in rats with experimentally induced endometriosis. Magn. Reson. Imaging 30, 860–868
  • Lee K.J., An J.H., Chun J.R., Chung K.H., Park W.Y., Shin J.S., Kim D.H., Bahk Y.Y., 2013. In vitro analysis of the anti-cancer activity of mitoxantrone loaded on magnetic nanoparticles. J. Biomed. Nanotechnol. 9, 1071–1075
  • Lemmen J.G., Agerholm I., Ziebe S., 2008. Kinetic markers of human embryo quality using time-lapse recordings of IVF/ICSI-fertilized oocytes. Reprod. Biomed. Online 17, 385–391
  • Levine J., Canada A., Stern C.J., 2010. Fertility preservation in adolescents and young adults with cancer. J. Clin. Oncol. 28, 4831–4841
  • Li P.W., Kuo T.H., Chang J.H., Yeh J.M., Chan W.H., 2010. Induction of cytotoxicity and apoptosis in mouse blastocysts by silver nanoparticles. Toxicol. Lett. 197, 82–87
  • Liu C., Zhang N., 2011. Nanoparticles in gene therapy principles, prospects, and challenges. Prog. Mol. Biol. Transl. Sci. 104, 509–562
  • Mathias F.T., Romano R.M., Kizys M.M., Kasamatsu T., Giannocco G., Chiamolera M.I., Dias-da-Silva M.R., Romano M.A., 2015. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology 9, 64–70
  • Meng H., Xing G., Sun B. et al., 2010. Potent angiogenesis inhibition by the particulate form of fullerene derivatives. ACS Nano 4, 2773–2783
  • Menjoge A.R., Navath R.S., Asad A., Kannan S., Kim C.J., Romero R., Kannan R.M., 2010. Transport and biodistribution of dendrimers across human fetal membranes: implications for intravaginal administration of dendrimer-drug conjugates. Biomaterials 31, 5007–5021
  • Mishra M.K., Gérard H.C., Whittum-Hudson J.A., Hudson A.P., Kannan R.M., 2012. Dendrimer-enabled modulation of gene expression in Chlamydia trachomatis. Mol. Pharmaceut. 9, 413–421
  • Mohammadi Fartkhooni F., Noori A., Momayez M., Sadeghi L., Shirani K., Yousefi Babadi V., 2013. The effects of nano titanium dioxide (TiO2 ) in spermatogenesis in wistar rat. Eur. J. Exp. Biol. 3 (4), 145–149
  • Moretti E., Terzuoli G., Renieri T., Iacoponi F., Castellini C., Giordano C., Collodel G., 2013. In vitro effect of gold and silver nanoparticles on human spermatozoa. Andrologia 45, 392–396
  • Mroczek-Sosnowska N., Sawosz E., Vadalasetty K.P., Łukasiewicz M., Niemiec J., Wierzbicki M., Kutwin M., Jaworski S., Chwalibog A., 2015. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int. J. Mol. Sci. 16, 4838–4849
  • Muthu M.S., Leong D.T., Mei L., Feng S.S., 2014. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics 4, 660–677
  • Myllynen P.K., Loughran M.J., Howard C.V., Sormunen R., Walsh A.A., Vähäkangas K.H., 2008. Kinetics of gold nanoparticles in the human placenta. Reprod. Toxicol. 26, 130–137
  • Niemeyer C.M., Mirkin C.A. (Editors), 2004. Nanobiotechnology: Concepts, Applications and Perspectives. Wiley-VCH. Weinheim (Germany)
  • Padmavathy N., Vijayaraghavan R., 2008. Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci. Technol. Adv. Mat. 9, 035004, doi:10.1088/1468-6996/9/3/035004
  • Parab H.J., Chen H.M., Lai T.-C., Huang J.H., Chen P.H., Liu R.S., Hsiao M., Chen Ch.-H., Tsai D.-P., Hwu Y.-K., 2009. Biosensing, cytotoxicity, and cellular uptake studies of surface-modified gold nanorods. J. Phys. Chem. C 113, 7574–7578
  • Parrington J., Coward K., Gadea J., 2011. Sperm and testis mediated DNA transfer as a means of gene therapy. Syst. Biol. Reprod. Med. 57, 35–42
  • Petros R.A., DeSimone J.M., 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627
  • Pinborg A., Wennerholm U.B., Romundstad L.B., Loft A., Aittomaki K., Söderström-Anttila V., Nygren K.G., Hazekamp J., Bergh C., 2013. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum. Reprod. Update 19, 87–104
  • Pokropivny V.V., Skorokhod V.V., 2007. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater. Sci. Eng. C 27, 990–993
  • Powers C.M., Slotkin T.A., Seidler F.J., Badireddy A.R., Padilla S., 2011. Silver nanoparticles alter zebrafish development and larval behavior: Distinct roles for particle size, coating and composition. Neurotoxicol. Teratol. 33, 708–714
  • Praetner M., Rehberg M., Bihari P. et al., 2010. The contribution of the capillary endothelium to blood clearance and tissue deposition of anionic quantum dots in vivo. Biomaterials 31, 6692–6700
  • Pyrpassopoulos S., Niarchos D., Nounesis G., Boukos N., Zafiropoulou I., Tzitzios V., 2007. Synthesis and self-organization of Au nanoparticles. Nanotechnology 18, 485604, doi: 10.1088/0957-4484/18/48/485604
  • Rajeshkumar S., Kannan C., Annadurai G., 2012. Green synthesis of silver nanoparticles using marine brown algae Turbinaria conoides and its antibacterial activity. Int. J. Pharm. Bio Sci. 3, 502–510
  • Rath D., Barcikowski S., de Graaf S. et al., 2013. Sex selection of sperm in farm animals: status report and developmental prospects. Reproduction 145, R15–R30
  • Sawosz E., Grodzik M., Zielińska M., Niemiec T., Olszańska B., Chwalibog A., 2009. Nanoparticles of silver do not affect growth, development and DNA oxidative damage in chicken embryos. Arch. Geflügelk. 73, 208–213
  • Sawosz F., Pineda L., Hotowy A., Jaworski S., Prasek M., Sawosz E., Chwalibog A., 2013. Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis. Arch. Anim. Nutr. 67, 347–355
  • Schleich N., Po C., Jacobs D., Ucakar B., Gallez B., Danhier F., Préat V., 2014. Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J. Control. Release 194, 82–91
  • Shimizu M., Tainaka H., Oba T., Mizuo K., Umezawa M., Takeda K., 2009. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part. Fibre Toxicol. 6, 20, doi:10.1186/1743-8977-6-20
  • Sikorska J., Szmidt M., Sawosz E., Niemiec T., Grodzik M., Chwalibog A., 2010. Can silver nanoparticles affect the mineral content, structure and mechanical properties of chicken embryo bones?. J. Anim. Feed Sci. 19, 286–291
  • Silva L.P., 2014. Potential practical implications of nanotechnology in animal reproductive biotechnologies. Anim. Reprod. 11, 278–280
  • Singh R., Verma R., Kaushik A., Sumana G., Sood S., Gupta R.K., Malhotra B.D., 2011. Chitosan–iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens. Bioelectron. 26, 2967–2974
  • Sleiman H.K., Romano R.M., de Oliveira C.A., Romano M.A., 2013. Effects of prepubertal exposure to silver nanoparticles on reproductive parameters in adult male Wistar rats. J. Toxicol. Environ. Health Pt. A 76, 1023–1032
  • Sondi I., Salopek-Sondi B., 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182
  • Spadafora C., 2007. Sperm-mediated gene transfer: mechanisms and implications. In: Proceedings of the 10th International Symposium on Spermatology, Madrid (Spain), pp. 459–467
  • Studnicka A., Sawosz E., Grodzik M., Chwalibog A., Balcerak M., 2009. Influence of nanoparticles of silver/palladium alloy on chicken embryos’ development. Ann. Warsaw Agricult. Univ. -SGGW Anim. Sci. 46, 237–242
  • Sultana S., Khan M.R., Kumar M., Kumar S., Ali M., 2013. Nanoparticles-mediated drug delivery approaches for cancer targeting: a review. J. Drug Target. 21, 107–125
  • Sunkar S., Nachiyar C.V., 2012. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac. J. Trop. Biomed. 2, 953–959
  • Takahashi Y., Mizuo K., Shinkai Y., Oshio S., Takeda K., 2010. Prenatal exposure to titanium dioxide nanoparticles increases dopamine levels in the prefrontal cortex and neostriatum of mice. J. Toxicol. Sci. 35, 749–756
  • Takeda K., Suzuki K.I., Ishi T., Isihara A. et al., 2009. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems. J. Health Sci. 55, 95–102
  • Tang J., Xu Z., Zhou L., Qin H., Wang Y., Wang H., 2010. Rapid and simultaneous detection of Ureaplasma parvum and Chlamydia trachomatis antibodies based on visual protein microarray using gold nanoparticles and silver enhancement. Diagn. Micr. Infec. Dis. 67, 122–128
  • Taniguchi N., 1974. On the basic concept of nanotechnology. In: Proceedings of the International Conference on Production Engineering, Part II. Tokyo. Japan Society of Precision Engineering, pp. 18–23
  • Tassinari R., Cubadda F., Moracci G. et al., 2014. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology 8, 654–662
  • Taylor U., Barchanski A., Garrels W., Klein S., Kues W., Barcikowski S., Rath D., 2012. Toxicity of gold nanoparticles on somatic and reproductive cells. In: E. Zahavy, A. Ordentlich, S. Yitznaki, A. Shafferman (Editors). Nano-Biotechnology for Biomedical and Diagnostic Research. Springer. Berlin (Germany), pp. 125–133
  • Thakor A.S., Gambhir S.S., 2013. Nanooncology: the future of cancer diagnosis and therapy. CA Cancer J. Clin. 63, 395–418
  • Thakur M., Gupta H., Singh D., Mohanty I.R., Maheswari U., Vanage G., Joshi D.S., 2014. Histopathological and ultra structural effects of nanoparticles on rat testis following 90 days (Chronic study) of repeated oral administration. J. Nanobiotechnol. 12, doi: 10.1186/s12951-014-0042-8
  • Tiedemann D., Taylor U., Rehbock C., Jakobi J., Klein S., Kues W.A., Barcikowski S., Rath D., 2014. Reprotoxicity of gold, silver, and gold–silver alloy nanoparticles on mammalian gametes. Analyst 139, 931–942
  • Tomoda K., Watanabe A., Suzuki K., Inagi T., Terada H., Makino K., 2012. Enhanced transdermal permeability of estradiol using combination of PLGA nanoparticles system and iontophoresis. Colloid. Surface B 97, 84–89
  • Toti U.S., Guru B.R., Hali M., McPharlin C.M., Wykes S.M., Panyam J., Whittum-Hudson J.A., 2011. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 32, 6606–6613
  • Wang A.Z., Langer R., Farokhzad O.C., 2012. Nanoparticle delivery of cancer drugs. Annu. Rev. Med. 63, 185-198
  • Wierzbicki M., Sawosz E., Grodzik M., Prasek M., Jaworski S., Chwalibog A., 2013. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett. 8, 195, doi: 10.1186/1556-276X-8-195
  • Wyrick P.B., 2010. Chlamydia trachomatis persistence in vitro: an overview. J. Infect. Dis. 201, Suppl. 2, S88–S95
  • Xie H., Kang Y.J., 2009. Role of copper in angiogenesis and its medicinal implications. Curr. Med. Chem. 16, 1304–1314
  • Xie J., Lee S., Chen X., 2010. Nanoparticle-based theranostic agents. Advan. Drug. Deliv. Rev. 62, 1064–1079
  • Yamashita K., Yoshioka Y., Higashisaka K. et al., 2011. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat. Nanotechnol. 6, 321–328
  • Yang P.T., Hoang L., Jia W.W., Skarsgard E.D., 2011. In utero gene delivery using chitosan-DNA nanoparticles in mice. J. Surg. Res. 171, 691–699
  • Yu M.K., Park J., Jon S., 2012. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics 2, 3–44
  • Yuan J., Duan R., Yang H., Luo X., Xi M., 2012. Detection of serum human epididymis secretory protein 4 in patients with ovarian cancer using a label-free biosensor based on localized surface plasmon resonance. Int. J. Nanomed. 7, 2921–2928
  • Zakhidov S.T., Marshak T.L., Malolina E.A., Kulibin A.Y., Zelenina I.A., Pavluchenkova S.M., Rudoi V.M., Dement’eva O.V., Skuridin S.G., Evdokimov Yu.M., 2010. Gold nanoparticles disturb nuclear chromatin decondensation in mouse sperm in vitro. Biochemistry (Moscow) Suppl. A: Membrane Cell Biol. 4, 293–296
  • Zhao D., Zhao X., Zu Y., Li J., Zhang Y., Jiang R. et al., 2010. Preparation, characterization, and in vitro targeted delivery of folatedecorated paclitaxel-loaded bovine serum albumin nanoparticles. Int. J. Nanomedicine 5, 669–677
  • Zhou X., Li W., Fang L., Zhang D., Dai J., 2015. Hydroxyapatite nanoparticles improved survival rate of vitrified porcine oocytes and its mechanism. Cryoletters 36 ,45–50
  • Zielinska M., Sawosz E., Grodzik M., Balcerak M., Wierzbicki M., Skomial J., Sawosz F., Chwalibog A., 2012. Effect of taurine and gold nanoparticles on the morphological and molecular characteristics of muscle development during chicken embryogenesis. Arch. Anim. Nutr. 66, 1–13
  • Zielinska M., Sawosz E., Grodzik M., Wierzbicki M., Gromadka M., Hotowy A., Sawosz F., Lozicki A., Chwalibog A., 2011. Effect of heparan sulfate and gold nanoparticles on muscle development during embryogenesis. Int. J. Nanomed. 6, 3163–3172

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b7ce7e3-68c9-402a-980b-1c251634493c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.