PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 24 | Special Issue S1 |

Tytuł artykułu

The influence of water and mineral oil on volumetric losses in a hydraulic motor

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In this paper volumetric losses in hydraulic motor supplied with water and mineral oil (two liquids having significantly different viscosity and lubricating properties) are described and compared. The experimental tests were conducted using an innovative hydraulic satellite motor, that is dedicated to work with different liquids, including water. The sources of leaks in this motor are also characterized and described. On this basis, a mathematical model of volumetric losses and model of effective rotational speed have been developed and presented. The results of calculation of volumetric losses according to the model are compared with the results of experiment. It was found that the difference is not more than 20%. Furthermore, it has been demonstrated that this model well describes in both the volumetric losses in the motor supplied with water and oil. Experimental studies have shown that the volumetric losses in the motor supplied with water are even three times greater than the volumetric losses in the motor supplied with oil. It has been shown, that in a small constant stream of water the speed of the motor is reduced even by half in comparison of speed of motor supplied with the same stream of oil

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Opis fizyczny

p.213-223,fig.,ref.

Twórcy

autor
  • Faculty of Mechanical Engineering, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland

Bibliografia

  • 1. Balawender A.: Physical and mathematical model of losses in hydraulic motors. Developments in mechanical engi-neering, Gdansk University of Technology Publishers. Gdansk 2005.
  • 2. Dymarski C., Dymarski P.: Developing Methodology for Model Tests of Floating Platforms in Low-Depth Towing Tank. Archives of Civil and Mechanical Engineering, No 1/2016, DOI: d x.doi.org/10.1016/j.acme.2015.07.003
  • 3. Guzowski A., Sobczyk A.: Reconstruction of hydrostatic drive and control system dedicated for small mobile plat-form. American Society of Mechanical Engineers, 2014 doi: dx.doi.org/10.1115/FPNI2014-7862.
  • 4. Jasinski R.: Problems of the starting and operating of hydraulic components and systems in low ambient tem-perature (Part I). Polish Maritime Research, No 4/2008.
  • 5. Jasinski R.: Problems of the starting and operating of hydraulic components and systems in low ambient tem-perature (Pa r t II). Polish Ma rit ime Resea rch, No 1/20 09.
  • 6. Jasinski R.: Problems of the starting and operating of hydraulic components and systems in low ambient tem-perature. Part III.Methods of determining parameters for correct start-ups of hydraulic components and systems in low ambient temperatures. Polish Maritime Research, No 4/2009.
  • 7. Litwin W., Olszewski A.: Water-Lubricated Sintered Bronze. Journal Bearings - Theoretical and Experimental Research. Tribology Transactions, vol. 57, No 1/2014.
  • 8. Lubinski J., Sliwinski P.: Multi parameter sliding test result evaluation for the selection of material pair for wear resistant components of a hydraulic motor dedicated for use with environmentally friendly working fluids. Solid State Phenomena, No 225/2015.
  • 9. Maczyszyn A.: Energy a na lysis of rotary positive d isplacement machines used in hydrostatic transmissions. PhD thesis. Gdansk University of Technology, 2014.
  • 10. Osinski P., Deptula A., Partyka M.: Discrete optimization of a gear pump after tooth root undercutting by means of multi-valued logic trees. Archives of Civil and Mechanical Engineering, No 4/2013, DOI: 10.1016/j.acme.2013.05.001.
  • 11. Paszota Z.: Energy losses in hydrostatic drive. LABERT Academic Publishing, 2016.
  • 12. Patrosz P.: Deformation in the axial clearance compen-sation node in the satellite pump unit. Hydraulics and Pneumatics 1/2014, Poland.
  • 13. Pobedza J., Sobczyk A.: Properties of high pressure water hydraulic components with modern coatings. Advanced Materials Research. Trans Tech Publications Ltd, 849/2014. doi: 10.4028/www.scientific.net/AMR.849.100.
  • 14. Sliwinski P.: Satellite displacement machines. Basis of design and analysis of power loss. Gdansk University of Technology Publishers, 2016.
  • 15. Sliwinski P.: The basics of design and experimental tests of the commutation unit of a hydraulic satellite motor. Archives of Civil and Mechanical Engineering, No 16/2016, DOI: 10.1016/j.acme.2016.04.003.
  • 16. Sliwinski P. Satellite pump and motor. Machines Tech-nologies Materials 9/2014.
  • 17. Sliwinski P.: The flow of liquid in flat gaps of satellite motors working mechanism. Polish Maritime Research, No 2/2014.
  • 18. Sliwinski P.: Pressure losses and power balance in the unloaded satellite pump. Hydraulika a Pneumatika, No 1-2/2013.
  • 19. Sliwinski P.: New satellite pumps. Key Engineering Mate-rials, No 490/2012.
  • 20. Śliwiński, P.: Influence of oil and emulsion HFA-E on flow characteristics in gaps of hydraulics satellite motors (in Polish). Hydraulika i Pneumatyka, No 5/2007.
  • 21. Sliwinski, P.: Comparison of phenomena in hydraulic sat-ellite motors supplied with oil-in-water emulsion and oil. PhD thesis. Faculty of Mechanical Engineering, Gdansk University of Technology, 2006.
  • 22. Urbanczyk J.: Research of hydraulic motors for needs of small mechanization in the mining industry. PhD thesis. AGH University of Science and Technology, 1999.
  • 23. Walczak P., Sobczyk A.: Simulation of water hydraulic control system of francis turbine. American Society of Mechanical Engineers, 2014. doi: dx.doi.org/10.1115/FPNI2014-7814
  • 24. Zloto T., Nagorka A.: An efficient FEM for pressure analysis of oil film in a piston pump. Applied Mathemat-ics and Mechanics, vol.30, No 1/2009.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b3f1181-7b38-49d0-a138-b7642f2cc743
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.