PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 62 | 4 |

Tytuł artykułu

The osteoderm microstructure in doswelliids and proterochampsids and its implications for palaeobiology of stem archosaurs

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Osteoderms are common in most archosauriform lineages, including basal forms, such as doswelliids and proterochampsids. In this survey, osteoderms of the doswelliids Doswellia kaltenbachi and Vancleavea campi, and proterochampsid Chanaresuchus bonapartei are examined to infer their palaeobiology, such as histogenesis, age estimation at death, development of external sculpturing, and palaeoecology. Doswelliid osteoderms have a trilaminar structure: two cortices of compact bone (external and basal) that enclose an internal core of cancellous bone. In contrast, Chanaresuchus bonapartei osteoderms are composed of entirely compact bone. The external ornamentation of Doswellia kaltenbachi is primarily formed and maintained by preferential bone growth. Conversely, a complex pattern of resorption and redeposition process is inferred in Archeopelta arborensis and Tarjadia ruthae. Vancleavea campi exhibits the highest degree of variation among doswelliids in its histogenesis (metaplasia), density and arrangement of vascularization and lack of sculpturing. The relatively high degree of compactness in the osteoderms of all the examined taxa is congruent with an aquatic or semi-aquatic lifestyle. In general, the osteoderm histology of doswelliids more closely resembles that of phytosaurs and pseudosuchians than that of proterochampsids.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.819-831,fig.,ref.

Twórcy

Bibliografia

  • Arcucci, A. and Marsicano, C.A. 1998. A distinctive new archosaur from the Middle Triassic (Los Chañares Formation) of Argentina. Journal of Vertebrate Paleontology 18: 228–232.
  • Barrett, P.M., Clarke, J.B., Brinkman, D.B., Champman, S.D., and Ensom, P.C. 2002. Morphology, histology, and identification of the “granicones” from the Purbeck Limestone Formation (Lower Cretaceous: Berriasian) of Dorset, southern England. Cretaceous Research 23: 279–295.
  • Buchwitz, M., Witzmann, F., Voigt, S., and Golubev, V. 2012. Osteoderm microstructure indicates the presence of a crocodylian-like trunk brancing system in a group of armoured basal tetrapods. Acta Zoologica 93: 260–280.
  • Buffrénil, V. de 1982. Morphogenesis of bone ornamentation in extant and extinct crocodilians. Zoomorphology 99: 155–166.
  • Buffrénil, V. de, Clarac, F., Canoville, A., and Laurin, M. 2016. Comparative data on the differentiation and growth of bone ornamentation in gnathostomes (Chordata: Vertebrata). Journal of Morphology 277: 634–670.
  • Buffrénil, V. de, Dauphin, Y., Rage. J.C., and Sire, J.-Y. 2011. An enamel like tissue, osteodermine, on the osteoderms of a fossil anguid (Glyptosaurinae) lizard. Comptes Rendus Palevol 10: 427–437.
  • Burns, M.E. and Currie, P.J. 2014. External and internal structure of ankylosaur (Dinosauria; Ornithischia) osteoderms and their systematic relevance. Journal of Vertebrate Paleontology 34: 835–851.
  • Burns, M.E., Vickaryous, M.K., and Currie, P.J. 2013. Histological variability in fossil and recent alligatoroid osteoderms: systematic and functional implications. Journal of Morphology [published online].
  • Cerda, I.A. and Desojo, J.B. 2011. Dermal armour histology of aetosaurs (Archosauria: Pseudosuchia), from the Upper Triassic of Argentina and Brazil. Lethaia 44: 417–428.
  • Cerda, I.A. and Powell, J.E. 2010. Dermal armor histology of Saltasaurus loricatus, an Upper Cretaceous sauropod dinosaur from Northwest Argentina. Acta Palaeontologica Polonica 55: 389–398.
  • Cerda, I.A., Desojo, J.B., and Scheyer, T.M. 2015. Osteoderm histology of Proterochampsia and Doswelliidae (Reptilia: Archosauriformes) and their evolutionary and paleobiological implications. Journal of Morphology 276: 385–402.
  • Cerda, I.A., Desojo, J.B., Scheyer, T.M. and Schultz, C.L. 2013. Osteoderm microstructure of “rauisuchian” archosaurs from South America. Geobios 46: 273–283.
  • Chinsamy, A. and Raath, M.A. 1992. Preparation of fossil bone for histological examination. Palaeontologia Africana 29: 39–44.
  • Desojo, J.B., Ezcurra, M.D., and Schultz, C.L. 2011. An unusual new archosauriform from the Middle–Late Triassic of southern Brazil and the monophyly of Doswelliidae. Zoological Journal of the Linnean Society 161: 839–87.
  • Erickson, G.M. and Brochu, C.A. 1999. How the “terror crocodile” grew so big. Nature 398: 205–206.
  • Ezcurra, M.D. 2016. The phylogenetic relationships of basal archosauromorphs, with an emphasis on the systematics of proterosuchian archosauriforms. PeerJ 4: e1778.
  • Filippi, L.S., Cerda, I.A., and Garrido, A.C. 2013. Morfología e histología de osteodermos de un Peirosauridae de la Cuenca Neuquina. Ameghiniana 50: 3–13.
  • Francillon-Vieillot, H., Buffrénil, V. de, Castanet. J., Géraudie. J., Meunier, F.J., Sire, J.-Y., Zylberberg, L., and Ricqlès, A. de 1990. Microstructures and mineralization of vertebrate skeletal tissues. In: J. Carter (ed.), Skeletal Biomineralizations: Patterns, Processes, and Evolutionary Trends, Vol. 1, 471–530. Van Nostrand Reinhold, New York.
  • Girondot, M. and Laurin, M. 2003. Bone profiler: a tool to quantify, model, and statistically compare bone-section compactness profiles. Journal of Vertebrate Paleontology 23: 458–461.
  • Haines, R.W. and Mohuiddin, A. 1968. Metaplastic bone. Journal of Anatomy 103: 527–538.
  • Hayashi, S., Carpenter, K., Watabe, M., and McWhinney, L. 2012. Ontogenetic histology of Stegosaurus plates and spikes. Palaeontology 55: 145–161.
  • Hill, R.V. 2010. Osteoderms of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology 30 (6, supplement): 154–176.
  • Hill, R.V. and Lucas, S.G. 2006. New data on the anatomy and relationships of the Paleocene crocodilian Akanthosuchus langstoni. Acta Palaeontologica Polonica 51: 455–464.
  • Houssaye, A. 2009. “Pachyostosis” in aquatic amniotes: a review. Integrative Zoology 4: 325–340.
  • Houssaye, A. 2013. Palaeoecological and morphofunctional interpretation of bone mass increase: an example in Late Cretaceous shallow marine squamates. Biological Reviews of the Cambridge Philosophical Society 88: 117–139.
  • Hua, S. and Buffrénil, V. de 1996. Bone histology as clue in the interpretation of functional adaptations in the Thalattosuchia (Reptilia, Crocodylia). Journal of Vertebrate Paleontology 16: 703–717.
  • Long, R.A. and Murry, P.A. 1995. Late Triassic (Carnian and Norian) tetrapods from the southwestern United States. New Mexico Museum of Natural History and Science Bulletin 4: 1–254.
  • Jannello, J.M., Cerda, I.A., and Fuente, M. de la 2016. Shell bone histology of the long-necked chelid Yaminuechelys (Testudines: Pleurodira) from the late Cretaceous early Palaeocene of Patagonia with comments on the histogenesis of bone ornamentation. The Science of Nature 103: 1–26.
  • Klein, N., Scheyer, T.M. and Tütken, T. 2009. Skeletochronology and isotopic analysis of a captive individual of Alligator mississippiensis Daudin, 1802. Fossil Record 12: 121–131.
  • Levrat-Calviac, V. and Zylberberg, L. 1986. The structure of the osteoderms in the gekko: Tarentola mauritanica. American Journal of Anatomy 176: 437–466.
  • Main, R.P., Ricqlès, A. de, Horner, J.R., and Padian, K. 2005. The evolution and function of thyreophoran dinosaur scutes: implications for plate function in stegosaurs. Paleobiology 31: 291–314.
  • Nesbitt, S.J. 2011. The early evolution of archosaurs: relationships and the origin of major clades. Bulletin of the American Museum of Natural History 352: 1–292.
  • Nesbitt, S.J., Stocker, M.R., Small, B.J., and Downs, A. 2009. The osteology and relationships of Vancleavea campi (Reptilia: Archosauriformes). Zoological Journal of the Linnean Society 157: 814–864.
  • Parker, W.G. and Barton, B.J. 2008. New Information on the Upper Triassic archosauriform Vancleavea campi based on new material from the Chinle Formation of Arizona. Palaeontologia Electronica 11:1–20.
  • Parker, W.G., Stocker, M.R., and Irmis, R.B. 2008. A new Desmatosuchine aetosaur (Archosauria: Suchia) from the Upper Triassic Tecovas Formation (Dockum Group) of Texas. Journal of Vertebrate Paleontology 28: 692–701.
  • Rasband, W. 2003. Image J. National Institutes of Health, Bethesda, available at http://rsb.info.nih.gov/ij/
  • Reid, R.E.H. 1996. Bone histology of the Cleveland-Lloyd dinosaurs and of dinosaurs in general. Part I: Introduction to bone tissues. Brigham Young University Geological Studies 41: 25–72.
  • Ricqlès, A. de and Buffrénil, V. de 2001. Bone histology, heterochronies and the return of the tetrapods to life in water: Where are we? In: J. Mazin and V. de Buffrénil (eds.), Secondary Adaptation of Tetrapods to Life in Water, 289–310. Verlag Dr. Friedrich Pfeil, München.
  • Ricqlès, A. de, Padian, K., and Horner, J.R. 2003. On the bone histology of some Triassic pseudosuchian archosaurs and related taxa. Annales de Paléontologie 89: 67–101.
  • Romer, A.S. 1971. The Chañares (Argentina) Triassic reptile fauna. XI. Two new long-snouted thecodonts, Chanaresuchus and Gualosuchus. Breviora 379: 1–22.
  • Ruibal, R. and Shoemaker, V. 1984. Osteoderms in anurans. Journal of Herpetology 18: 313–328.
  • Scheyer T.M. 2007. Skeletal histology of the dermal armor of Placodontia: the occurrence of “postcranial fibro-cartilaginous bone” and its developmental implications. Journal of Anatomy 211: 737–753.
  • Scheyer, T.M. and Desojo, J.B. 2011. Palaeohistology and microanatomy of rauisuchian osteoderms (Archosauria: Pseudosuchia). Palaeontology 54: 1289–1302.
  • Scheyer, T.M. and Sánchez-Villagra, M.R. 2007. Carapace bone histology in the giant pleurodiran turtle Stupendemys geographicus: phylogeny and function. Acta Palaeontologica Polonica 52: 137–154.
  • Scheyer, T.M. and Sander, M.P. 2004. Histology of ankylosaur osteoderms: implications for systematics and function. Journal of Vertebrate Paleontology 24: 874–893.
  • Scheyer, T.M. and Sander, P.M. 2007. Shell bone histology indicates terrestrial palaeoecology of basal turtles. Proceedings of the Royal Society B 274: 1885–1893.
  • Scheyer, T.M. and Sander, P.M. 2009. Bone microstructures and mode of skeletogenesis in osteoderms of three pareiasaurs taxa from the Permian of South Africa. Journal of Evolutionary Biology 22: 1153–1162.
  • Scheyer, T.M., Brüllmann, B., and Sánchez-Villagra, M.R. 2008. The ontogeny of the shell in side-necked turtles, with emphasis on the homologies of costal and neural bones. Journal of Morphology 269: 1008–1021.
  • Scheyer, T.M., Desojo, J.B., and Cerda, I.A. 2014. Bone histology of phytosaur, aetosaur, and other archosauriform osteoderms (Eureptilia, Archosauromorpha). The Anatomical Record 297:240–260.
  • Sterli, J., Fuente, M.S. de la, and Cerda, I.A. 2013. A new species of meiolaniform turtle and a revision on the Upper Cretaceous meiolaniforms of southern South America. Ameghiniana 50: 240–256.
  • Sues, D.-H., Desojo, J.B., and Ezcurra, M.D. 2013. Doswelliidae: A clade of unusual armoured archosauriforms from the Middle and Late Triassic. In: S.J. Nesbitt, J.B. Desojo, and R.B. Irmis (eds.), Anatomy, Phylogeny, and Palaeobiology of Early Archosaurs and their Kin. Geological Society of London Special Publication 379: 49–58.
  • Taborda, J.R.A., Cerda, I.A., and Desojo, J.B. 2013. Growth curve of Aetosauroides scagliai Casamiquela 1960 (Pseudosuchia: Aetosauria) inferred from osteoderm histology. In: S.J. Nesbitt, J.B. Desojo, and R.B. Irmis (eds.), Anatomy, Phylogeny, and Palaeobiology of Early Archosaurs and their Kin. Geological Society of London Special Publication 379: 413–424.
  • Taborda, J.R.A., Heckert, A.B., and Desojo, J.B. 2015. Intraspecific variation in Aetosauroides scagliai Casamiquela (Archosauria: Aetosauria) from the Upper Triassic of Argentina and Brazil: an example of sexual dimorphism? Ameghiniana 52: 173–187.
  • Taylor, M.A. 2000. Functional significance of bone ballast in the evolution of buoyancy control strategies by aquatic tetrapods. Historical Biology 14: 15–31.
  • Trotteyn, M.J., Arcucci, M.A., and Raugust, T. 2013. Proterochampsia: an endemic archosauriform clade from South America. In: S.J. Nesbitt, J.B. Desojo, and R.B. Irmis (eds.), Anatomy, Phylogeny, and Palaeobiology of Early Archosaurs and their Kin. Geological Society of London Special Publication 379: 59–90.
  • Trotteyn, M.J., Martínez, R.N., and Alcober, O.A. 2012. A new proterochampsid Chanaresuchus ischigualastensis (Diapsida, Archosauriformes) in the early Late Triassic Ischigualasto Formation, Argentina. Journal of Vertebrate Paleontology 32: 485–489.
  • Vickaryous, M.K. and Hall, B.K. 2008. Development of the dermal skeleton in Alligator mississippiensis (Archosauria, Crocodylia) with comments on the homology of osteoderms. Journal of Morphology 269: 398–422.
  • Vickaryous, M.K. and Sire, J.-Y. 2009. The integumentary skeleton of tetrapods: origin, evolution, and development. Journal of Anatomy 214: 441–464.
  • Weems, R.E. 1980. An unusual newly discovered archosaur from the Upper Triassic of Virginia, USA. Transactions of the American Philosophical Society 70: 1–53.
  • Witzmann, F. 2009. Comparative histology of sculptured dermal bones in basal tetrapods, and the implications for the soft tissue dermis. Palaeodiversity 2: 233–270.
  • Witzmann, F. 2010. Morphological and histological changes of dermal scales during the fish-to-tetrapod transition. Acta Zoologica 92: 281–302.
  • Witzmann, F. and Soler-Gijón, R. 2008. The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian Bystrowiella. Acta Zoologica 89: 1–19.
  • Zylberberg, L. and Castanet, J. 1985. New data on the structure and the growth of the osteoderms in the reptile Anguis fragilis L. (Anguidae, Squamata). Journal of Morphology 186: 327–342.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b152793-c99c-4899-9d89-276e12c9ec1e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.