PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 15 | 1 |

Tytuł artykułu

The effect of physical activity on pulmonary function in patients with pectus excavatum

Treść / Zawartość

Warianty tytułu

PL
Wpływ aktywności fizycznej na funkcje płuc u pacjentów z lejkowatą klatką piersiową

Języki publikacji

EN

Abstrakty

EN
Background. The aim of this study was to determine the impact of the level of physical activity on pulmonary function in patients with pectus excavatum. Material and methods. This study included 47 patients diagnosed with pectus excavatum, with a median age of 19 years (min. 17 years, max. 26 years). The degree of deformity was evaluated clinically by anthropometric measurement. Spirometry was used for the evaluation of pulmonary function. The demographic, clinical data, and experience of patients with sporting activity were examined using a questionnaire. The self-reported International Physical Activity Questionnaire short form (IPAQ-SF) was used to determine physical activity levels. Results. With higher physical activity, there was statistically significant higher inspiratory vital capacity (IVC) (rho=0.628), forced vital capacity (FVCex) (rho=0.455), and forced expiratory volume in 1 second (FEV₁) (rho=0.356). A statistically significant relationship was observed between deformity rate and spirometric parameters for FEV₁ (p=0.011), maximal expiratory flow rate of 75% FVC (MEF75) (p<0.0001), and peak expiratory flow (PEF) (p<0.0001). Conclusions. Respiratory functions of patients with chest deformity are positively influenced by physical activity.
PL
Wprowadzenie. Celem badania było ustalenie wpływu poziomu aktywności fizycznej na funkcje płuc u pacjentów z lejkowatą klatką piersiową. Materiał i metody. W badaniu wzięło udział 47 pacjentów ze zdiagnozowaną lejkowatą klatką piersiową. Średnia wieku wynosiła 19 lat (minimum 17, maksimum 26 lat). Stopień deformacji został określony klinicznie za pomocą pomiaru antropometrycznego. Do określenia funkcji płuc zastosowano spirometrię. Dane demograficzne, kliniczne oraz związane z aktywnością sportową pacjentów zostały zebrane w postaci ankiety, natomiast w celu ocenienia poziomu aktywności fizycznej wykorzystano skrócony Międzynarodowy Kwestionariusz Aktywności Fizycznej (IPAQ-SF) wypełniony przez pacjentów. Wyniki. Wraz ze wzrostem aktywności fizycznej pacjentów zaobserwowano statystycznie istotny wzrost wdechowej pojemności życiowej (IVC) (rho=0,628), natężonej objętości wydechowej (FVCex) (rho=0,455) i objętości wydechowej pierwszosekundowej (FEV₁) (rho=0,356). Zaobserwowany związek pomiędzy stopniem deformacji i parametrami spirometrycznymi okazał się statystycznie istotny dla zmiennych: FEV₁ (p=0.011), maksymalnego przepływu wydechowego o 75% FVC (MEF75) (p<0,0001) i szczytowego przepływu wydechowego (PEF) (p<0,0001). Wnioski. Aktywność fizyczna ma pozytywny wpływ na funkcje oddechowe pacjentów z deformacją klatki piersiowej.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.37-47,ref.

Twórcy

  • Department of Physiotherapy, Faculty of Health Care, University of Presov, Partizanska 1, 080 01 Presov, Slovakia
autor
  • Department of Physiotherapy, Faculty of Health Care, University of Presov, Presov, Slovakia
autor
  • Secondary Medical School, Kosice, Slovakia
autor
  • Department of Physiotherapy, Faculty of Health Care, University of Presov, Presov, Slovakia
autor
  • Department of Physiotherapy, Faculty of Health Care, University of Presov, Presov, Slovakia
autor
  • Cardiocenter, Faculty Hospital J.A.Reiman, Presov, Slovakia
autor
  • Department of Physiotherapy, Faculty of Health Care, University of Presov, Presov, Slovakia

Bibliografia

  • 1. Pedersen BK, Saltin B. Exercise as medicine – evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015; 25(Suppl 3): 1-72. https://doi.org/10.1111/sms.12581
  • 2. Warburton DER, Nicol CW, Bredin SSD. Health benefits of physical activity: the evidence. CMAJ. 2006; 174(6): 801-809. https://doi.org/10.1503/cmaj.051351
  • 3. Macera CA, Hootman JM, Sniezek JE. Major public health benefits of physical activity. Arthritis Rheum. 2003; 49(1): 122-128. https://doi.org/10.1002/art.10907
  • 4. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.
  • 5. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Impact of physical inactivity on the world’s major non-communicable diseases. Lancet. 2012; 380(9838): 219-229. https://doi.org/10.1016/S0140-6736(12)61031-9
  • 6. Luzak A, Karrasch S, Thorand B, Nowak D, Holle R, Peters A, et al. Association of physical activity with lung function in lung-healthy German adults: results from the KORA FF4 study. BMC Pulm Med. 2017; 17: 215. https://doi.org/10.1186/s12890-017-0562-8
  • 7. Courteix D, Obert P, Lecoq AM, Guenon P, Koch G. Effect of intensive swimming training on lung volumes, airway resistance and on the maximal expiratory flow-volume relationship in prepubertal girls. Eur J Appl Physiol Occup Physiol. 1997; 76(3): 264-269. https://doi.org/10.1007/s004210050246
  • 8. Almeida VP, Ferreira AS, Guimarães FS, Papathanasiou J, Lopes AJ. The impact of physical activity level, degree of dyspnoea and pulmonary function on the performance of healthy young adults during exercise. J Bodyw Mov Ther. 2019; 23(3): 494-501. https://doi.org/10.1016/j.jbmt.2018.05.005
  • 9. Vedala SR, Paul N, Mane AB. Difference in pulmonary function test among the athletic and sedentary population. Natl J Physiol Pharm Pharmacol. 2013; 3(2): 118-123. https://doi.org/10.5455/njppp.2013.3.109-114
  • 10. Pelkonen M, Notkola IL, Lakka T, Tukiainen HO, Kivinen P, Nissinen A. Delaying decline in pulmonary function with physical activity: a 25-year follow-up. Am J Respir Crit Care Med. 2003; 168(4): 494-299. https://doi.org/10.1164/rccm.200208-954OC
  • 11. Jakes RW, Day NE, Patel B, Khaw KT, Oakes S, Luben R, et al. Physical inactivity is associated with lower forced expiratory volume in 1 second: European Prospective Investigation into Cancer-Norfolk Prospective Population Study. Am J Epidemiol. 2002; 156(2): 139-47. https://doi.org/10.1093/aje/kwf021
  • 12. Bartl V. [Chest defects]. In: Poul J., ed. [Pediatric orthopaedics]. 1st edition. Praha: Galén; 2009. p. 79-81 (in Czech).
  • 13. Jaroszewski D, Notrica D, McMahon L, Steidley DE, Deschamps C. Current management of pectus excavatum. A review and update of therapy and treatment recommendations. J Am Board Fam Med. 2010; 23(2): 230-239. https://doi.org/10.3122/jabfm.2010.02.090234
  • 14. Jaroszewski DE, Ewais MM, Chao CJ, Gotway MB, Lackey JJ, Myers KM, et al. Success of minimally invasive pectus excavatum procedures (modified nuss) in adult patients (≥30 years). Ann Thorac Surg. 2016; 102(3): 993-1003. https://doi.org/10.1016/j.athoracsur.2016.03.105
  • 15. Siman J, Cingel V. [Congenital chest wall deformities]. In: Haruštiak S, Kothaj P, Pechan J, Vajó J, Siman J., eds. [Principles of surgery II]. 1st edition. Bratislava: SAP; 2010. p. 577- 602 (in Slovak).
  • 16. Kelly RE, Obermeyer RJ, Nuss D. Diminished pulmonary function in pectus excavatum: from denying the problem to finding the mechanism. Ann Cardiothorac Surg. 2016; 5(5): 466-475. https://doi.org/10.21037/acs.2016.09.09
  • 17. Kelly RE, Goretsky MJ, Obermeyer R, Kuhn MA, Redlinger R, Haney TS, et al. Twenty-one years of experience with minimally invasive repair of pectus excavatum by the Nuss procedure in 1215 patients. Ann Surg. 2010; 252(6): 1072-1081. https://doi.org/10.1097/SLA.0b013e3181effdce
  • 18. Chan JY, Huang WL. Objective effect manifestation of pectus excavatum on load-stressed pulmonary function testing: a case report. J Med Case Reports. 2011; 5(1): 592. https://doi.org/10.1186/1752-1947-5-592
  • 19. Rowland T, Moriarty K, Banever G. Effect of pectus excavatum deformity on cardiorespiratory fitness in adolescent boys. Arch Pediatr Adolesc Med. 2005; 159(11): 1069-1073. https://doi.org/10.1001/archpedi.159.11.1069
  • 20. Fonkalsrud EW, Beanes S. Surgical management of pectus carinatum: 30 years’ experience. World J Surg. 2001; 25(7): 898-903. https://doi.org/10.1007/s00268-001-0048-x
  • 21. Zuidema WP, Oosterhuis JWA, Zijp GW, van Baren R, de Lange-de Klerk ESM, van der Heide SM, et al. Sports activity in adolescents in the Netherlands with a pectus excavatum; the impact of surgery. J Pediatr Surg. 2019; 54(8): 1671-1674. https://doi.org/10.1016/j.jpedsurg.2018.11.004
  • 22. Steinmann C, Krille S, Mueller A, Weber P, Reingruber B, Martin A. Pectus excavatum and pectus carinatum patients suffer from lower quality of life and impaired body image: a control group comparison of psychological characteristics prior to surgical correction. 2011; 40(5): 1138-1145. https://doi.org/10.1016/j.ejcts.2011.02.019
  • 23. Kelly RE, Daniel A. Outcomes, quality of life, and long-term results after pectus repair from around the globe. Semin Pediatr Surg. 2018; 27(3): 170-174. https://doi.org/10.1053/j.sempedsurg.2018.05.003
  • 24. Frydrychová M. [Congenital chest defects]. In: Dungl P., editor. [Orthopedics]. 2nd edition. Praha: Grada; 2014. p. 439-441 (in Czech).
  • 25. Paul H, Lee PH, Macfarlane DJ, Lam THH, Sunita M, Stewart SM. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): a systematic review. International Journal of Behavioral Nutrition and Physical Activity. 2011; 8(1): 115. https://doi.org/10.1186/1479-5868-8-115
  • 26. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Impact of physical inactivity on the world’s major non-communicable diseases. Lancet. 2012; 380(9838): 219-229. https://doi.org/10.1016/S0140-6736(12)61031-9
  • 27. Rimarčík M. [Statistics for practice]. Košice: Marián Rimarčík; 2007 (in Slovak).
  • 28. Lawson ML, Mellins RB, Paulson JF, Shamberger RC, Oldham K, Azizkhan RG, et al. Increasing severity of pectus excavatum is associated with reduced pulmonary function. J Pediatr. 2011; 159(2): 256-261. https://doi.org/10.1016/j.jpeds.2011.01.065
  • 29. Abu-Tair T, Turial S, Hess M, Wiethoff CM, Staatz G, Lollert A, et al. Impact of pectus excavatum on cardiopulmonary function. Ann Thorac Surg. 2018; 105(2): 455-460. https://doi.org/10.1016/j.athoracsur.2017.09.037
  • 30. Morshuis W, Folgering H, Barentsz J, van Lier H, Lacquet L. Pulmonary function before surgery for pectus excavatum and at long-term follow-up. Chest. 1994; 105(6): 1646-1652 https://doi.org/10.1378/chest.105.6.1646
  • 31. Fagaras SP, Radu LE, Vanvu G. The level of physical activity of university students. Procedia – Social and Behavioral Sciences. 2015; 197: 1454-1457. https://doi.org/10.1016/j.sbspro.2015.07.094
  • 32. Bergier J, Kapka L, Biliński P, Wojtyła A. Physical activity of Polish adolescents and young adults according to IPAQ: a population based study. Ann Agric Environ Med. 2012; 19(1): 109-115.
  • 33. Pastuszak A, LisowskiK, Lewandowska J, BuśkoK. Level of physical activity of physical education students according to criteria of the IPAQ questionnaire and the recommendation of WHO experts. Biomedical Human Kinetics. 2014; 6(1): 5-11. https://doi.org/10.2478/bhk-2014-0002
  • 34. Almeida VP, Ferreira AS, Guimarães FS, Papathanasiou J, Lopes AJ. The impact of physical activity level, degree of dyspnoea and pulmonary function on the performance of healthy young adults during exercise. J Bodyw Mov Ther. 2019; 23(3): 494-501. https://doi.org/10.1016/j.jbmt.2018.05.005
  • 35. Vedala SR, Paul N, Mane AB. Difference in pulmonary function test among the athletic and sedentary population. Natl J Physiol Pharm Pharmacol. 2013; 3(2): 118-123. https://doi.org/10.5455/njppp.2013.3.109-114
  • 36. Courteix D, Obert P, Lecoq AM, Guenon P, Koch G. Effect of intensive swimming training on lung volumes, airway resistance and on the maximal expiratory flow-volume relationship in prepubertal girls. Eur J Appl Physiol Occup Physiol. 1997; 76(3): 264-269. https://doi.org/10.1007/s004210050246
  • 37. Fuertes E, Carsin AE, Antó JM, Bono R, Corsico AG, Demoly P, et al. Leisure-time vigorous physical activity is associated with better lung function: the prospective ECRHS study. Thorax. 2018; 73(4): 376-384. https://doi.org/10.1136/thoraxjnl-2017-210947
  • 38. Rawashdeh A, Alnawaiseh N. The effect of high-intensity aerobic exercise on the pulmonary function among inactive male individuals. Biomed. Pharmacol. J. 2018; 11(2): 735-741. https://doi.org/10.13005/bpj/1427
  • 39. Garcia-Aymerich J, Lange P, Benet M, Schnohr P, Antó JM. Regular physical activity modifies smoking-related lung function decline and reduces risk of chronic obstructive pulmonary disease: a population-based cohort study. Am J Respir Crit Care Med. 2007; 175(5): 458-463. https://doi.org/10.1164/rccm.200607-896OC
  • 40. Cheng YJ, Macera CA, Addy CL, Sy FS, Wieland D, Blair SN. Effects of physical activity on exercise tests and respiratory function. Br J Sports Med. 2003; 37(6): 521-528. https://doi.org/10.1136/bjsm.37.6.521
  • 41. Hancox RJ, Rasmussen F. Does physical fitness enhance lung function in children and young adults?. Eur Respir J. 2018; 51(2): 1701374. https://doi.org/10.1183/13993003.01374-2017
  • 42. Menezes AM, Wehrmeister FC, Muniz LC, Perez-Padilla R, Noal RB, Silva MC, et al. Physical activity and lung function in adolescents: the 1993 Pelotas (Brazil) birth cohort study. J Adolesc Health. 2012; 51(6 Suppl): S27-31. https://doi.org/10.1016/j.jadohealth.2012.06.023
  • 43. Gold DR, Wang X, Wypij D, Speizer FE, Ware JH, Dockery DW. Effects of cigarette smoking on lung function in adolescent boys and girls. N Engl J Med. 1996; 335(13): 931-937. https://doi.org/10.1056/NEJM199609263351304
  • 44. Bird Y, Staines-Orozco H. Pulmonary effects of active smoking and secondhand smoke exposure among adolescent students in Juárez, Mexico. Int J Chron Obstruct Pulmon Dis. 2016; 11: 1459-1467. https://doi.org/10.2147/COPD.S102999
  • 45. Omaník P, Schlanková N, Béder I, Kabát M, Trnka J. [Anterior chest wall deformities in children]. Pediatr. Prax. 2018; 19(3): 106-110 (in Slovak).
  • 46. Kokavec M, Novorolský K. [Scoliosis and physical activity in children]. Pediatr. Prax. 2007; 8(2): 70-74 (in Slovak).
  • 47. Tomaszewski R, Wiktor Ł, Machała L. Evaluation of thoracic vertebrae rotation in patients with pectus excavatum. Acta Orthop Traumatol Turc. 2017; 51(4): 284-289. https://doi.org/10.1016/j.aott.2017.03.005
  • 48. Diarbakerli E, Grauers A, Möller H, Abbott A, Gerdhem P. Adolescents with and without idiopathic scoliosis have similar self-reported level of physical activity: a cross-sectional study. Scoliosis Spinal Disord. 2016; 11: 17. https://doi.org/10.1186/s13013-016-0082-y

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2b13cb07-62b4-4507-9530-692a677de6dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.