PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 34 | 3 |

Tytuł artykułu

Effect of digestate, liquid and solid manure application on chemical properties of soil

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The growing number of biogas plants results in increasing digestate volume used as fertilizer on arable land. This study compared the influence of digestate addition on soil chemical properties with traditional organic fertilizers such as liquid and solid cattle manure and with mineral fertilizer. The digestate supplied soil with a significant amount of NH4-N, whose nitrification was slower comparing to soils treated with mineral fertilizer and liquid cattle manure. Digestate also slightly increased concentration of water-soluble phosphorus in soil and added high amounts of plant-available potassium and dissolved organic carbon. Therefore, the application of digestate should follow the same rules as traditional liquid fertilizers; however, its agronomic use should be based not only on N, but also on P and K content

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

3

Opis fizyczny

p.337-354,fig.,ref.

Twórcy

  • Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland

Bibliografia

  • Act of 10 July 2007 on fertilisers and fertilizing. Journal of Laws of 2018 item 1259. Prime Minister of the Republic of Poland, Warsaw.
  • Agri-environmental indicator – mineral fertiliser consumption. 2017. Eurostat Statistics Ex-plained, https://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_in-dicator_-_mineral_fertiliser_consumption, access: 15.11.2018.
  • ALBURQUERQUE J.A., DE LA FUENTE C., BERNAL M.P. 2012. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agr. Ecosyst. Environ., 160: 15–22.
  • Analiza chemiczno-rolnicza gleby. Metoda pobierania próbek i oznaczanie zawartości jonów azota-nowych i amonowych w glebach mineralnych. PN-R-04028:1997. Polski Komitet Normalizacy-jny.
  • BACHMANN S., GROPP M., EICHLER-LÖBERMANN B. 2014. Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry. Biomass Bioen-erg., 70: 429–439.
  • BACHMANN S., WENTZEL S., EICHLER-LÖBERMANN B. 2011. Codigested dairy slurry as a phospho-rus and nitrogen source for Zea mays L. and Amaranthus cruentus L. J. Plant Nutr. Soil Sci., 174: 908–915.
  • CAVALLI D., CORTI M., BARONCHELLI D., BECHINI L., MARINO GALLINA P. 2017. CO2 emissions and mineral nitrogen dynamics following application to soil of undigested liquid cattle manure and digestates. Geoderma, 308: 26–35.
  • CAVALLI D., MARINO GALLINA P., SACCO D., BECHINI L. 2016. Soil mineral nitrogen dynamics following repeated application of dairy slurry. Eur. J. Soil Sci., 67: 804–815.
  • EBA statistical report 2017. 2018. European Biogas Association. http://european-biogas.eu/2017/12/14/eba-statistical-report-2017-published-soon/, access: 15.11.2018.
  • DE LA FUENTE C., ALBURQUERQUE J.A., CLEMENTE R., BERNAL M.P. 2013. Soil C and N miner-alisation and agricultural value of the products of an anaerobic digestion system. Biol. Fert. Soils, 49: 313–322.
  • Gleby i utwory mineralne – Pobieranie próbek i oznaczanie składu granulometrycznego. Polski Komitet Normalizacyjny. PN-R-04032:1998.
  • GOULDIN GK.W.T. 2016. Soil acidification and importance of liming agricultural soils with partic-ular reference to the United Kingdom. Soil Use Manage., 32: 390–399.
  • GÓMEZ-BRANDÓN M., JUÁREZ M. F..D., ZANGERLE M., INSAM H. 2016. Effects of digestate on soil chemical and microbiological properties. A comparative study with compost and vermicompost.J. Hazard. Mater., 302: 267–274.
  • GRABOWSKI J. 2009. Skład chemiczny nawozów naturalnych. OSchR Białystok, http://www.oschr-bialystok.internetdsl.pl/pdf/nawozy_naturalne.pdf, access: 19.11.2018.
  • GRIGATTI M., DI GIROLAMO G., CHINCARINI R., CIAVATTA C. BARBANTI L. 2011. Potential nitro-gen mineralization, plant utilization efficiency and soil CO2 emissions following the addition of anaerobic digested slurries. Biomass Bioenerg., 35: 4619–4629.
  • GRZEŚKOWIAK A. 2013. Vademecum nawożenia, czyli zbiór podstawowych, praktycznych informa-cji o nawożeniu. Grupa Azoty, Tarnów-Kędzierzyn-Police.
  • GÜNGÖR K., KARTHIKEYANK.G. 2008. Phosphorus forms and extractability in dairy manure. A case study for Wisconsin on-farm anaerobic digesters. Bioresour. Technol., 99: 425–436.
  • HJORTH M., CHRISTENSEN M.L., SOMMER S.G. 2010. Solid-liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev., 30: 153–180.
  • HUPFAUF S., BACHMANN S., FERNÁNDEZ-DELGADO JUÁREZ M., INSAM H., EICHLER-LÖBERMANN B. 2016. Biogas digestates affect crop P uptake and soil microbial community composition. Sci. Total Environ., 542: 1144–1154.
  • INSAM H., GÓMEZ-BRANDÓN M., ASCHER J. 2015. Manure-based biogas fermentation residues – Friend or foe of soil fertility? Soil Biol. Biochem., 84: 1–14.
  • IOCOLI G.A., ZABALOY M.C., PASDEVICELLI G., GÓMEZM.A. 2019. Use of biogas digestates obtained by anaerobic digestion and co-digestion as fertilizers. Characterization, soil biological activity and growth dynamic of Lactuca sativa L. Sci. Total Environ., 647: 11–19.
  • IPCC 2013. Climate change 2013. The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  • KOSZEL M., LORENCOWICZ E. 2015. Agricultural use of biogas digestate as a replacement fertiliz-ers. Farm Machinery and Processes Management in Sustainable Agriculture, 7th Internation-al Scientific Symposium. Agriculture and Agricultural Science Procedia, 7: 119–124.
  • MARTINS.L., CLARKEM.L, OTHMAN M., RAMSDENS.J., WESTH.M. 2015. Biochar-mediated reductions in greenhouse gas emissions from soil amended with anaerobic digestates. Biomass Bioenerg., 79: 39–49.
  • MÓRTOLA N., ROMANIUK R., COSENTINO V., EIZA M., CARFAGNO P., RIZZO P., BRES P., RIERA N., ROBA M., BUTTI M., SAINZ D., BRUTTI L. 2019. Potential use of a poultry digestate as a biofer-tilizer. Evaluation of soil properties and Lactuca sativa growth. Pedosphere, 29: 60–69.
  • NABEL M., SCHREYS.D., POORTER H., KOLLER R., JABLONOWSKIN.D. 2017. Effects of digestate fertilization on Sida hermaphrodita. Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenerg., 107: 207–213.
  • ODLARE A., PELL M., SVENSSON K. 2008. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Manage., 28: 1246–1253.
  • OSTROWSKA A., GAWLIŃSKI S., SZCZUBIAŁKA Z. 1991. Metody analizy i oceny właściwości gleb i roślin. Instytut Ochrony Środowiska, Warszawa.
  • PIVATO A., VANIN S., RAGA R., LAVAGNOLOM.C., BARAUSSE A., RIEPLE A., LAURENT A., COSSU R. 2016. Use of digestate from decentralized on-farm biogas plants as fertilizer in soil. An eco-toxicological study for future indicators in risk and life cycle assessment. Waste Manage., 49: 378–389.
  • PROVENZANOM.R., CAVALLO O., MALERBAA.D., FABBRI C., ZACCONE C. 2018. Unravelling (maize silage) digestate features throughout a full-scale plant. A spectroscopic and thermal approach. J. Clean. Prod., 193: 372–378
  • RIGBY H., SMITHS.R. 2013. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Manage., 33: 2641–2652
  • RISBERG K., CEDERLUND H., PELL M., ARTHURSON V., SCHNÜRER A. 2017. Comparative character-ization of digestate versus pig slurry and cow manure. Chemical composition and effects on soil microbial activity. Waste Manage., 61: 529–538.
  • RODEGHIERO M., HEINEMEYER A., SCHRUMPF M., BELLAMY P. 2012. Determination of soil carbon stocks and changes. In: Soil carbon dynamics. An integrated methodology. Eds. W.L. KUTSCH, M. BAHN, A. HEINEMEYER. Cambridge University Press, pp. 49–75.
  • SIGURNJAK I., VANEECKHAUTE C., MICHELS E., RYCKAERT B., GHEKIER G., TACKF.M.G., MEERSE. 2017. Fertilizer performance of liquid fraction of digestate as synthetic nitrogen substitute in silage maize cultivation for three consecutive years. Sci. Total Environ., 599–600: 1885–1894.
  • SHARPLEY A.N., KLEINMAN P.J.A., WELD J.L. 2006. Environmental soil phosphorus indices. In: Soil sampling methods of analysis. Eds. M.R. CARTER, E.G. GREGORICH. 2nd edition. Canadian Society of Soil Science. CRC Press. Taylor & Francis Group.
  • SOIL SCIENCE SOCIETY OF POLAND. 2008. Klasyfikacja uziarnienia gleb i utworów mineralnych – PTG 2008. Roczn. Glebozn., 50: 5–16.
  • Standard methods for the examination of water and waste water 1999. 20th edition. American Public Health Association, Washington, DC, USA.
  • SZYMAŃSKA M., SZARA E., SOSULSKI T., STEPIEN W., PILARSKI K., PILARSKAA.A. 2018. Chemical properties and fertilizer value of ten different anaerobic digestates. Fresen. Environ. Bull., 27: 3425–3432.
  • TAMBONE F., SCAGLIA B., D’IMPORZANO G., SCHIEVANO A., ORZI V., SALATI S., ADANI F. 2010. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81: 577–583.
  • TAMBONE F., ADANI F. 2017. Nitrogen mineralization from digestate in comparison to sewage sludge, compost and urea in a laboratory incubated soil experiment. J. Plant Nutr. Soil. Sci., 180: 355–365.
  • VELTHOFG.L., OUDENDAG D., WITZKEH.P., ASMANW.A.H., KLIMONT Z., OENEMA O. 2009. Inte-grated assessment of nitrogen emissions from agriculture in EU-27 using MITERRA EUROPE. J. Environ. Qual., 38: 402–417.
  • WESTPHAL A., KÜCKEB M., HUER H. 2016. Soil amendment with digestate from bio-energy fermen-ters for mitigating damage to Beta vulgaris subspp. byHeterodera schachtii. Appl. Soil Ecol., 99: 129–136.
  • ZHAO W., CAI Z., XU Z. 2007. Does ammonium-based N addition influence nitrification and acidi-fication in humid subtropical soils of China? Plant Soil, 297: 213–221.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-29f8ee4f-0e06-4240-9a7c-2c89565b9b82
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.