PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 3 |

Tytuł artykułu

Influence of cadmium dose and form on the yield of oat (Avena sativa L.) and the metal distribution in the plant

Treść / Zawartość

Warianty tytułu

PL
Wpływ dawki i formy kadmu na plon i dystrybucję metalu w owsie (Avena sativa L.)

Języki publikacji

EN

Abstrakty

EN
The influence of two levels of artificial Cd soil contamination (2 and 20 mg Cd kg-1 of soil) on the weight of oat plants, chlorophyll content in leaves, rate of photosynthesis, stomatal conductivity and transpiration rate was researched in a pot experiments with Avena sativa L. Another objective was to detect the effect of cadmium contamination of soil on the content of cadmium in the dry mass of oat panicles, stems, upper green and bottom yellow leaves and roots. The soil contamination was applied in the forms of nitrate Cd(NO3)2, chloride CdCl2 and sulphate CdSO4 2-. High correlation was found between the measured levels of photosynthesis rate, stomatal conductivity and transpiration rates, but no correlation occurred between these levels and the cadmium content in leaves. In the variants with Cd contamination, insignificantly higher levels of photosynthesis rates were observed in the measurements than in the zero variant. A 10-fold higher Cd application dose significantly manifested itself by a higher content of Cd in all the analyzed parts of plants, including generative organs. A several-fold higher Cd level was found in the roots than in other parts of the plant, whereas the lowest Cd content was observed in panicles. However, the results obtained by measuring the cadmium content in stems and green leaves were not significant. In most treatments, a notably higher Cd content was determined in bottom yellow leaves than in upper green leaves. This indicates Cd accumulation in senescent tissues and its difficult reutilization. The highest variance was discovered in treatments with the accompanying SO4 2- anion. While estimating the effect of accompanying anions on the Cd content, significant differences were observed only under the higher level of Cd contamination. The increase in the Cd content in bottom yellow leaves after CdSO4 application was significant when compared with the treatment in which Cd(NO3)2 was applied and insignificant versus the variant with CdCl2. On the other hand, a higher and more significant content of Cd in phtosynthetically active green leaves was measured in the treatment with CdCl2 than with Cd(NO3)2.
PL
W eksperymentach z Avena sativa L. zbadano wpływ 2 poziomów sztucznego zanieczyszczenia gleby Cd (2 i 20 mg Cd kg-1 gleby) w postaci Cd(NO3)2, CdCl2 i CdSO4 2- na masę roślin owsa, zawartość chlorofilu w liściach, tempo fotosyntezy, przewodność szparkową i szybkość parowania, a także na zawartość kadmu w suchej masie wiechy, łodyg, górnych i dolnych zielonych i żółtych liści oraz korzeni. Wysoki poziom korelacji stwierdzono między mierzonymi poziomami intensywności fotosyntezy, przewodności szparkowej i szybkości transpiracji, nie wykazano jednak korelacji między tymi poziomami i zawartością kadmu w liściach. W wariantach z zanieczyszczeniem Cd zaobserwowano nieznacznie wyższy poziom fotosyntezy w pomiarach w porównaniu z wariantem zerowym. W przypadku 10-krotnie większej intensywności stosowania kadmu wykazano istotnie większą zawartość Cd we wszystkich monitorowanych częściach roślin, w tym w organach generatywnych. Kilkakrotnie wyższy poziom Cd niż w innych częściach rośliny stwierdzono w korzeniach, a najmniejszy w wiechach, jednak dane uzyskane podczas pomiaru zawartości kadmu w łodygach i zielonych liściach nie były znaczące. W porównaniu z górnymi liśćmi, zauważalnie większą zawartość Cd w większości poddanych eksperymentowi roślin stwierdzono w dolnych żółtych liściach. Wskazuje to na akumulację Cd w starzejących się tkankach i trudności z jego przetworzeniem. Największą różnicę wykazano w próbkach z anionem towarzyszącym SO4 2-. Podczas ewaluacji wpływu anionów towarzyszących na zawartość Cd istotne różnice wystąpiły jedynie w przypadku wyższego poziomu zanieczyszczenia Cd. Znaczący wzrost zawartości Cd po zastosowaniu CdSO4 zaobserwowano w dolnych żółtych liściach, w porównaniu z próbkami, w których zastosowano Cd(NO3)2 natomiast nieznaczny – w porównaniu z próbkami, w których użyto CdCl2. Zdecydowanie największą zawartość Cd w zielonych liściach o aktywnej fotosyntezie stwierdzono w roślinach poddanych działaniu CdCl2 w porównaniu z tymi, w przypadku których użyto Cd(NO3)2.

Wydawca

-

Rocznik

Tom

19

Numer

3

Opis fizyczny

p.795-809,fig.,ref.

Twórcy

autor
  • Department of Biology, University of Hradec Kralove, Hradec Kralove, Czech Republic
autor
  • Department of Botany and Plant Physiology, Czech University of Life Sciences Prague, Kamycka 129, 165 21 Prague, Czech Republic
autor
  • Faculty of Pharmacy, Hradec Kralove Charles University in Prague, Hradec Kralove, Czech Republic
autor
  • Department of Biology, University of Hradec Kralove, Hradec Kralove, Czech Republic

Bibliografia

  • Abu-Muriefah S.S., 2008. Growth parameters and elemental status of cucumber (Cucumis sativus) seedlings in response to cadmium accumulation. Int. J. Agri. Biol., 10: 261-266.
  • Adriano D.C. 2001. Trace elements in terrestrial environments. Springer-Verlag, New York, 866 p.
  • Bolan N.S., Adriano D.C., Duraisamy P., Mani A. 2003. Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant Soil, 256: 231-241.
  • Burzynski M. 1988. The uptake and accumulation of phosphorus and nitrates and the activity of nitrate reductase in cucumber seedlings treated with PbCl2 or CdCl2. Acta Soc. Bot. Pol., 57: 349-359.
  • Cataldo D.A., Garland T.R., Wildung R.E. 1983. Cadmium uptake kinetics in intact soybean plants. Plant Physiol., 73: 844-848.
  • Cheng S., Ren F., Grosse W., Wu Z. 2002. Effects of cadmium on chlorophyll content, photochemical efficiency, and photosynthetic intensity of Canna indica Linn. Int. J. Phytoremediat., 4: 239-246.
  • Ciecko Z., Kalembasa S., Wyszkowski M., Rolka E. 2004. Effect of soil contamination by cadmium on potassium uptake by plants. Pol. J. Environ. Stud., 13: 333-337.
  • Clemens S. 2006. Evolution and function of phytochelatin synthases. J. Plant Physiol., 163: 319-332.
  • Clemens S., Palmgren M.G., Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci., 7: 309-315.
  • Costa G., Morel J.L., 1993. Cadmium uptake by lupinus-albus (L) – cadmium excretion, a possible mechanism of cadmium tolerance. Plant Nutr., 16: 1921-1929.
  • De Filipp is L.F., Ziegler H. 1993. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J. Plant Physiol., 142: 167-172.
  • Di Toppi L.S., Gabbriell i R. 1999. Response to cadmium in higher plants. Environ. Exp. Bot., 41: 105-130.
  • Duarte B., Delgado M., Cacador I. 2007. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere, 69: 836-840.
  • Ekmekci Y., Tanyolac D., Ayhan B., 2008. Effects of cadmium on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. J. Plant Physiol., 165: 600-611.
  • Eurola M., Hietaniemi V., Kontturi M., Tuuri H., Pihlava J.M., Saastamoinen M., Rantanen O., Kangas A., Niskanen M. 2003. Cadmium contents of oats (Avena sativa L.) in official variety, organic cultivation, and nitrogen fertilization trials during 1997-1999. J. Agric. Food Chem., 51: 2608-2614.
  • Gondek K. 2010. Zinc and cadmium accumulation in maize (Zea mays L.) and the concentration of mobile forms of these metals in soil after application of farmyard manure and sewage sludge. J. Elem., 15: 639-652.
  • Gouia H., Suzuki A., Brulfert J., Ghorbal M.H. 2003. Effects of cadmium on the coordination of nitrogen and carbon metabolism in bean seedlings. J. Plant Physiol., 160: 367-376.
  • Guo Y., Marschner H. 1995. Uptake, distribution and binding of cadmium and nickel in different plant species. J. Plant Nutr., 18: 2691-2706.
  • Hall J.L. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53: 1-11.
  • Hart J.J., Welch R.M., Norvell W.A., Sullivan L.A., Kochian L.V. 1998. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol., 116: 1413-1420.
  • Hasan S.A., Fariduddin Q., Ali B., Hayat S., Ahmad A. 2009. Cadmium: toxicity and tolerance in plants. J. Environ. Biol., 30: 165-174.
  • Herren T., Feller U. 1997. Transport of cadmium via xylem and phloem in maturing wheat shoots: Comparison with the translocation of zinc, strontium and rubidium. Ann. Bot., 80: 623-628.
  • Holm P.E., Christensen T.H., Tjell J.C., McGrath S.P. 1995. Speciation of cadmium and zinc with application to soil solutions. J. Environ. Qual., 24: 183-190.
  • Kacalkova L., Tlustos P., Szakova J. 2009. Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant Soil Environ., 55: 295-304.
  • Khan N.A., Singh S., Umar S. 2008. Sulfur assimilation and abiotic stress in plants. Springer Verlag, Heidelberg.
  • Kikuchi T., Okazaki M., Motobayashi T. 2009. Suppressive effect of magnesium oxide materials on cadmium accumulation in winter wheat grain cultivated in a cadmium-contaminated paddy field under annual rice-wheat rotational cultivation. J. Hazard. Mater., 168: 89-93.
  • Lagriffoul A., Mocquot B., Mench M., Vangronsveld J. 1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant Soil, 200: 241-250.
  • Leopold I., Gunther D., Schmidt J., Neumann D. 1999. Phytochelatins and heavy metal tolerance. Phytochemistry, 50: 1323-1328.
  • McKenna I.M., Chaney R.L., Will iams F.M. 1993. The effects of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach. Environ. Pollut., 79: 113-120.
  • McLaughl in M.J., Tiller K.G., Naidu R., Stevens D.P. 1996. Review: The behaviour and environmental impact of contaminants in fertilizers. Aust. J. Soil Res., 34: 1-54.
  • Mench M., Tancogne J., Gomez A., Juste C. 1989. Cadmium bioavailability to Nicotiana-tabacum- L., Nicotiana-rustica L., and Zea-mays-L. grown in soil amended or not amended with cadmium nitrate. Biol. Fertil. Soils, 8: 48-53.
  • Nocito F.F., Lancilli C., Giacomini B., Sacchi G.A. 2007. Sulfur metabolism and cadmium stress in higher plants. Plant Stress, 1: 142-156.
  • Obata H., Umebayashi M. 1993. Production of sh compounds in higher-plants of different tolerance to Cd. Plant Soil, 156: 533-536.
  • Page V., Feller U. 2005. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann. Bot., 96: 425-434.
  • Plaza S., Tearall S.K.L., Zhao F-J., Buchner P., McGrath S.P., Hawkesford M.J. 2007. Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J. Exp. Bot., 58: 1717-1728.
  • Polakova S., Kubik L., Nemec P., Maly S. 2010. Bazální monitoring zemědělských půd 1992-2007. UKZUZ, Brno, 94 p. (in Czech)
  • Salt D.E., Rauser W.E. 1995. Mgatp-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol., 107: 1293-1301.
  • Sharma M., Gautam K.H., Handique A.K. 2006. Toxic heavy metal stress in paddy: Metalaccumulation profile and development of a novel stress protein in seed. Ind. J. Plant Physiol., 11: 227-233.
  • Tlustos P., Szakova J., Korinek K., Pavlikova D., Hanc A., Balik J. 2006. The effect of liming on cadmium, lead, and zinc uptake reduction by spring wheat grown in contaminated soil. Plant Soil Environ., 52: 16-24.
  • Tuma J., Skalicky M., Tumova L., Malir F., Matejskova D. 2008. The translocation of zinc in Avena sativa L. depending on fertilisation with zinc and mobile anions. Cereal Res. Commun., 36: 1083-1086.
  • Tuma J., Skalicky M., Tumova L., Safrankova M. 2010. Translocation of nickel in Avena sativa: The effect of accompanying mobile anions. Fresn. Environ. Bull., 19: 2974-2980.
  • Vansteveninck R.F.M., Vansteveninck M.E., Fernando D.R. 1992. Heavy-metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna-minor). Plant Soil, 146: 271-280.
  • Vassilev A., Lidon F.C., Ramalh o J.C., Matos M.D., Bareiro M.G. 2004. Shoot cadmium accumulation and photosynthetic performance of barley plants exposed to high cadmium treatments. J. Plant Nutr., 27: 775-795.
  • Walker W.M., Mill er J.E., Hassett J.J. 1977. Effect of lead and cadmium upon calcium, magnesium, potassium, and phosphorus concentration in young corn plants. Soil Sci., 124: 145-151.
  • Welch R.M. 1995. Micronutrient nutrition of plants. Crit. Rev. Plant Sci., 14: 49-82.
  • Yuruk A., Bozkurt M.A., 2006. Heavy metal accumulation in different organs of plants grown under high sewage sludge doses. Fresen. Environ. Bull., 15: 107-112.
  • Zeller S., Feller U. 1999. Long-distance transport of cobalt and nickel in maturing wheat. Eur. J. Agron., 10: 91-98.
  • Zhao Z.Q., Zhu Y.G., Li H.Y., Smith S.E., Smith F.A. 2004. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum L.). Environ. Int., 29: 973-978.
  • Zhu Y.G., Zhao Z.Q., Li H.Y., Smith S.E., Smith F.A. 2003. Effect of zinc-cadmium interactions on the uptake of zinc and cadmium by winter wheat (Triticum aestivum) grown in pot culture. Bull. Environ. Contam. Toxicol., 71: 1289-1296.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-29681383-50ca-4727-860f-4481e8604832
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.