PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 28 | 4 |

Tytuł artykułu

Hydrophysical properties of Humic Latosols from Brazil

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The hydrophysical properties of the prevalent Humic Latosols (organic matter rich and charcoal stained soils) were related to structural sustainability under loading. Intact cores collected at the Ap, AB, Bw horizons were used for hydrophysical characterization. Precompression stresses at 10 suctions were obtained to estimate the load bearing capacities. We observed the dominance of kaolinite with some occurrences of gibbsite and hydroxy-interlayered vermiculite in the clay mineralogy. The high organic matter content in the Ap horizon favours crumb structure with the structural unit presenting high porosity and water retention. The structure of the AB and Bw horizons was, however, granular with structural units having low porosity. Possible influence of earlier incidences of fire enhanced the organic matter and carbon content in the soil reducing down the profile from 42.5 g kg-1 at the Ap to 16.4 g kg-1 at the Bw horizon. The C/N ratio increased from 14 at the Ap to 17 at the Bw, and air capacity increased from 18.1% at Ap to 32.0% at Bw. Precompression stress values were: 100.6±40.7 kPa at Ap, 117.4±44.6 kPa at AB, and 116.1±58.9 kPa at Bw. Load bearing capacities at the AB and Bw horizons were homogenous.

Wydawca

-

Rocznik

Tom

28

Numer

4

Opis fizyczny

p.395-402,fig.,ref.

Twórcy

autor
  • Department of Soil Science, Federal University of Lavras, Caixa Postal 3037, CEP:37200-000 Lavras MG, Brazil
  • Institute for Plant Nutrition and Soil Science, Christian-Albrechts-University Kiel, Olshausenstrasse 40, 24118 Kiel, Germany
  • Department of Agricultural and Environmental Engineering, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria
  • Department of Soil Science, Federal University of Lavras, Caixa Postal 3037, CEP:37200-000 Lavras MG, Brazil
autor
  • Department of Soil Science, Federal University of Lavras, Caixa Postal 3037, CEP:37200-000 Lavras MG, Brazil
  • Department of Soil Science, Federal University of Lavras, Caixa Postal 3037, CEP:37200-000 Lavras MG, Brazil
autor
  • Department of Soil Science, Federal University of Lavras, Caixa Postal 3037, CEP:37200-000 Lavras MG, Brazil

Bibliografia

  • Ajayi A.E., Dias Jr. M.S., Curi N., Araujo Jr. C.F., Teixeira Souza T.T., and Inda Jr. A.V., 2009. Strength attributes and compaction susceptibility of Brazilian Latosols. Soil Till. Res., 105, 122-127.
  • Ajayi A.E., Dias Jr. M.S., Curi N., and Oladipo I., 2013. Compressive response of some agricultural soils influenced by the mineralogy and moisture. Int. Agrophys., 27, 239-246.
  • Alakukku L., Weisskopf P., Chamen W.C.T., Tijink F.G.J., van der Linden J.P., Pires S., Sommer C., and Spoor G., 2003. Prevention strategies for field traffic-induced subsoil compaction: a review. Part 1. Machines/soil interactions. Soil Till. Res., 73, 1/2, 145-160.
  • Andrade F.V., Schaefer C.E.G.R., Correa M.L.T., and Mendonca E.S., 2004. Carbon stocks in Brazilian Latosols (oxisols) from different morphoclimatic regions and management systems. Communications Soil Sci. Plant Analysis, 35, 15-16.
  • Calegari M.R., 2008. Occurrence and paleo-environmental significance the humic Oxisols horizon. Piracicaba Superior School of Agriculture, Piracicaba, Brazil.
  • Dias Jr. M.S., 2003. A soil mechanics approach study soil compaction In: ACHYUTHAN H (ed) Soil and soil physics in continental environment. Chenna: Allied Publishers Private, 179-199.
  • Dias Jr. M.S., Leite P.F., Lasmar Jr. E., and Araújo Jr. C.F., 2005. Traffic effects on the soil preconsolidation pressure due to eucalyptus harvest operations. Sci. Agric., 62, 248-255.
  • Dias Jr. M.S. and Pierce F.J., 1995. A simple procedure for estimating preconsolidation pressure from soil compression curves. Soil Technol., 8, 139-151.
  • Donagemma G.K., Ruiz H.A., Fontes M.P.F., Ker J.C., and Schaefer C.H.G.R., 2003. Dispersion of Oxisols in response to the use of pre-treatments on textural analysis (in Brazilian). Brazil J. Soil Sci., 27, 765-772.
  • Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, 1997. Manual of methods of soil analysis. National Soil Research Center, Rio de Janeiro, Brazil.
  • Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA, 2013. Brazilian system of soil classification. National Soil Research Center, Rio de Janeiro, Brazil.
  • Fontana A., Pereira M.G., Anjos L.H.C., and Benites V.M., 2008. Distribution of organic carbon in the humic fractions of diagnostic horizons from Brazilian soils. Communications Soil Sci. Plant Analysis, 39, 7-8.
  • Hart R.D., Wiriyakitnatee kul W., and Gilkes R.J., 2003. Properties of soil kaolins from Thailand. Clay Mineral., 38, 71-94.
  • Hartge K.H. and Horn R., 2009 (Eds). The physical analysis of soils: practice, measurement methods, evaluation. Schweizerbart, Stuttgart, Germant, Germany.
  • Holtz R. and Kovacs W., 1981 (Eds). An Introduction to Geotechnical Engineering. Prentice Hall, Englewood Cliffs, NJ. Horn R., Vossbrink J., and Becker S., 2004. Modern forest vehicles and their impacts on soil physical properties. Soil Till. Res., 79(2), 207-219.
  • Igwe C.A., 2005. Erodibility in relation to water-dispersible clay for some soils of eastern Nigeria. Land Degrad. Develop., 16, 87-96.
  • Igwe C.A. and Udegbunam O.N., 2008. Soil properties influencing water-dispersible clay and silt in an Ultisol in southern Nigeria. Int. Agrophysics, 22, 319-325.
  • Iori P., Dias Jr. M.S., Ajayi A.E., Guimarães P.T.G., Moreira Pais P.S., and Andrade M.L.C., 2013. Comparison of field and laboratory models of the load bearing capacity in coffee plantations. Ciência Agrotecnologia Lavras, 37(2), 130-137.
  • Jones R.J.A., Spoor G., and Thomason A.J., 2003. Vulnerability of subsoils in Europe to compaction: a preliminary analysis. Soil Till. Res., 73, 131-143.
  • Józfaciuk G., Sokołowska Z., Sokołowski S., Alekseev A., and Alekseeva T., 1995. Changes in mineralogical and surface properties of water dispersible clay after acid treatment of soils. Clay Minerals, 30, 149-155.
  • Kämpf N. and Schwertmann U., 1983. Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 29(1), 27-39.
  • Ker J.C., 1997. Oxisols of Brazil: a review. Geonomos, 5, 17-40.
  • Lehmann J., Skjemstad J., Sohi S., Carter J., Barson M., Falloon P., Coleman K., Woodbury P., and Krull E., 2008. Australian climate-carbon cycle feedback reduced by soil black carbon. Nature Geosci., 1, 832-835.
  • Martin D., Srivastava P.C., Ghosh D., and Zech W., 1998. Characteristics of humic substances in cultivated and natural forest soils of Sikkim. Geoderma, 84, 345-362.
  • Marques F.A., Calegari R.M., Torrado P.V., and Buurman P., 2011. Relationship between soil oxidizable carbon and physical, chemical and mineralogical properties of umbric ferralsols. Brazil J. Soil Sci., 35, 25-40.
  • Nguetnkam J.P. and Dultz S., 2011. Soil degradation in Central North Cameroon: Water-dispersible clay in relation to surface charge in Oxisol A and B horizons. Soil Till. Res., 113, 38-47.
  • Novotny E.H., Bonagamba T.J., Azevedo E.R., and Hayes M.H.B., 2009. Solid-state 13C nuclear magnetic resonance characterization of humic acids extracted from Amazonian dark earths (Terra Preta de Índio). In: Amazonian dark earths: wim sombroek’s vision (Eds W.I. Woods, W.G. Teixeira, J.Lehmann, C. Steiner, A. Winklerprins, L. Rebellato). Amsterdam, Springer, the Netherland.
  • Pais P.S.-M., Dias Jr., M.S., Dias A.C., Iori P., Guimarães P.T.G., and Santos G.A., 2013. Load-bearing capacity of a red-yellow latosol cultivated with coffee plants subjected to different weed managements. Ciência e Agrotecnologia, 37(2), 145-151.
  • Parfitt R.L., Theng B.K.G., Whitton J.S., Shepherd T.G., 1997. Effects of clay minerals and land use on organic matter pools. Geoderma, 75(1-2), 1-12.
  • Peng X.H., Horn R., Zhang B., and Zhaoa Q.G., 2004. Mechanisms of soil vulnerability to compaction of homogenized and recompacted Ultisols. Soil Till. Res., 76, 125-137.
  • Resende M., Curi N., Rezende S.B., Correa G.F., and Ker J.C., 2014. Pedology: basis for distinction of environments. Lavras, Editorial, UFLA, Brazil.
  • Römkens M.J.M. and Miller R.D., 1971. Predicting root size and frequency from one dimensional consolidation data – A mathematical model. Plant Soil, 35(1-3), 237-248.
  • Schmidt M.W.I., Skjemstad J.O., Gehrt E., and Kogel- Knabner I., 1999. Charred organic carbon in German chernozemic soils. Europ. J. Soil Sci., 50, 351-365.
  • Schnitzer M., 1986. Binding of Humic Substances by Soil Mineral Colloids. In: Interactions of Soil Minerals with Natural Organics and Microbes (Eds P.M. Huang, M. Schnitzer). Soil Sci. Soc. America, Special Publication, 17, 77-101.
  • Severiano E.C., de Oliveira G.E., Dias Jr. M.S., Curi N., Costa K.A., and Carducci C.E., 2013. Preconsolidation pressure, soil water retention characteristics, and texture of Latosols in the Brazilian Cerrado. Soil Res., 51(3), 193-202.
  • Sherman G.D. and Alexander L.T., 1959. Characteristics and Genesis of Low Humic Latosols. Soil Sci. Soc. Am. J., 23, 168-170.
  • Shindo H., Honna T., Yamamoto S., and Honna H., 2004. Contribution of charred plant fragments to soil organic carbon in Japanese volcanic ash soils containing black humic acids. Org. Geochem., 35, 235-241.
  • Silva A.C. and Vidal Torrado P., 1999. Genesis of Humic Oxisols and its relation to landscape evolution in a cratonic area of the south of Minas. Brazil J. Soil Sci., 23, 329-341.
  • Silva A.C., Vidal-Torrado P., González-Perez M., Martin Neto L., and Vasques F.M., 2007. Relationships between soil organic matter and slope steepness in toposequence of Oxisols in the south of Minas Gerais. Brazil J. Soil Sci., 31, 1059-1068.
  • Snedecor G.W. and Cochran W.G., 1989. Statical methods. Ames, Iowa State University, IA, USA.
  • Sutherland R.A. and Ziegler A.D., 1997. A new approach to determining water stable aggregation. Communications in Soil Sci. Plant Analysis, 28(19-20), 1871-1887.
  • Tawonpruek S., Kheoruenromne I., Suddhiprakarn A., and Gilkes R.J., 2006. Properties of red Oxisols on calcareous sedimentary rocks in Thailand. Geoderma, 136, 477-493.
  • Teh Boon Sung C., 2012. Aggregate stability of tropical soils in relation to their organic matter constituents and other soil properties. Pertanika J. Trop. Agric. Sci., 35(1), 135-148.
  • Tomasi A.C., Vasconcellos Inda A., and Dick D.P., 2012. Humic substances in highland subtropical Oxisol under different use and managements. Rural Sci., 42(12), 2180-2184.
  • Watson R.T., Noble I.R., Bolin B., Ravindramath N.H., Verardo D.J., and Dokken D.J., 2000. Land Use, Land- Use Change, and Forestry (a special Report of the IPCC). Cambridge University Press, Cambridge, UK.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-2887522d-3072-4f8f-9a0b-08c77bcd9a8d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.