PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 63 | 3 |

Tytuł artykułu

Altitudinal distribution of Aedes indices during dry season in the dengue endemic area of Central Java, Indonesia

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Aedes mosquitoes, mainly Aedes aegypti and Aedes albopictus, are the primary and secondary vectors of dengue viruses in Indonesia, with transmission occurring by sucking blood. The density of the vectors is influenced by season and rainfall, but limited by altitude. The aim of the study is to describe the density and distribution of dengue vectors during the dry season based on the altitudes of recent dengue cases in five regencies of Central Java Province, Indonesia. Mosquito larvae and pupae were collected from the indoor and outdoor water containers from 253 houses within 50 m of houses occupied by a dengue patient. A considerable dengue vector population was found in all localities and altitudes based on the Aedes indices: an HI of 41.7% (15.0–70.6), CI of 33.6% (8.1–69.6) and BI of 57.1 (15.0–94.1). The highest indices were found in the highest altitude settlement; as the most common larval habitat in this village was a large-sized cement tank, larvivorous fish can act as effective predators in this case. This finding indicates an expansion of the dengue problem from low to high altitudes, causing a high potential for dengue transmission in all of the localities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

63

Numer

3

Opis fizyczny

p.213-221,fig.,ref.

Twórcy

autor
  • Department of Epidemiology, Faculty of Public Health, Universitas Muhammadiyah Semarang, Jalan Kedungmundu Raya 18, 50273, Semarang, Indonesia
autor
  • Department of Environmental Health, Faculty of Public Health, Universitas Muhammadiyah Semarang, Jalan Kedungmundu Raya 18, 50273, Semarang, Indonesia
autor
  • Department of Epidemiology, Faculty of Public Health, Universitas Muhammadiyah Semarang, Jalan Kedungmundu Raya 18, 50273, Semarang, Indonesia
autor
  • Department of Arboviral Diseases Control, Central-Java Provincial Health Office, Jalan Pierre Tendean 24, 50132 Semarang, Indonesia

Bibliografia

  • [1] Bhatt S., Gething P.W., Brady O.J., Messina J.P., Farlow A.W., Moyes C.L., Drake J.M., Brownstein J.S., Hoen A.G., Sankoh O., Myers M.F., George D.B., Jaenisch T., Wint G.R.W., Simmons C.P., Scott T.W., Farrar J.J., Hay S.I. 2013. The global distribution and burden of dengue. Nature 496: 504-507. doi:10.1038/nature12060
  • [2] Murray N.E.A., Quam M.B., Wilder-Smith A. 2013. Epidemiology of dengue: the past, present and prospects. Clinical Epidemiology 5: 299-309. doi:10.2147/CLEP.S34440
  • [3] Bhatia R., Dash A.P., Sunyoto T. 2013. Changing epidemiology of dengue in South- East Asia. WHO South-East Asia Journal of Public Health 2: 23-27. doi:10.4103/2224-3151.115830
  • [4] Fahri S., Yohan B., Trimarsanto H., Sayono S., Hadisaputro S., Dharmana E., Syafruddin D., Sasmono R.T. 2013. Molecular surveillance of dengue in Semarang, Indonesia revealed the circulation of an old genotype of dengue virus serotype-1. PLOS Neglected Tropical Diseases 7: e2354. doi:10.1371/journal.pntd.0002354
  • [5] Nusa R., Prasetyowati H., Meutiawati F., Yohan B., Trimarsanto H., Setianingsih T.Y., Sasmono R.T. 2014. Molecular surveillance of dengue in Sukabumi, West Java province, Indonesia. Journal of Infection in Developing Countries 8: 733-741. doi:10.3855/jidc.3959
  • [6] Silva F.D., dos Santos A.M., Corrêa R.G.C.F., Caldas A.J.M. 2016. Temporal relationship between rainfall, temperature and occurrence of dengue cases in São Luís, Maranhão, Brazil. Ciência & Saúde Coletiva 21: 641-646. doi:10.1590/1413-81232015212. 09592015
  • [7] Sutarjo U.S., Primadi O. 2015. Profil Kesehatan Indonesia 2014. (Eds. Yudianto, D. Budijanto, B. Hardhana, T.A. Soenardi). Jakarta, Kementerian Kesehatan, Republik Indonesia.
  • [8] Sutarjo U.S., Budijanto D., Hardhana B, Yudianto, Soenardi T., Budiono C.S., Kurniasi N., Wardah, Manullang E.V., Ismandari F., Susanti M.I., Pangribowo S., Harpini A., Aprianda R., Sakti E.S., Indrayani Y.A, Khairani, Mardiana R., Susetyoaji E., Habibi H.A., Sari D.M., Sigit B.B., Sinin, Maslinda H. 2017. Data dan Informasi Profil Kesehatan 2016. Jakarta: Pusat Data dan Informasi Kementerian Kesehatan Republik Indonesia. http://www.depkes.go.id/resources/download/pusdatin/lain-lain/ Data dan Informasi Kesehatan Profil Kesehatan Indonesia 2016 - smaller size -web.pdf
  • [9] Dhewantara P.W., Ruliansyah A., Fuadiyah M.E.A., Astuti E.P., Widawati M. 2015. Space-time scan statistics of 2007-2013 dengue incidence in Cimahi city, Indonesia. Geospatial Health 10: 255-260.doi:10.4081/gh.2015.373
  • [10] Subedi D., Taylor-Robinson A.W. 2016. Epidemiology of dengue in Nepal: History of incidence, current prevalence and strategies for future control. Journal of Vector Borne Diseases 53: 1-7.
  • [11] Feldstein L.R., Brownstein J.S., Brady O.J., Hay S.I., Johansson M.A. 2015. Dengue on islands: a Bayesian approach to understanding the global ecology of dengue viruses. Transactions of the Royal Society of Tropical Medicine and Hygiene 109: 303-312. doi:10.1093/trstmh/trv012
  • [12] Ehelepola N.D.B., Ariyaratne K., Buddhadasa W.M.N.P., Ratnayake S., Wickramasinghe M. 2015. A study of the correlation between dengue and weather in Kandy City, Sri Lanka (2003-2012) and lessons learned. Infectious Diseases of Poverty 4: 42. doi:10.1186/s40249-015-0075-8
  • [13] Ibarra A.M.S., Ryan S.J., Beltrán E., Mejía R., Silva M., Muñoz Á. 2013. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS ONE 8: e78263. https://doi.org/10.1371/journal.pone.0078263
  • [14] Dengue Guidelines for Diagnosis, Treatment, Prevention and Control. New Edition. 2009. WHO. Geneva. http://www.who.int/tdr/publications/documents/dengue-diagnosis.pdf.
  • [15] Saleem M., Ghouse G., Hussain D., Saleem H.M., Abbas M. 2014. Distribution of dengue vectors during pre- and post-monsoon seasons in three districts of Punjab. Journal of Mosquito Research. 4: 1-5. doi:10.5376/jmr.2014.04.0015.
  • [16] Alshehri M.S.A. 2013. Dengue fever outburst and its relationship with climatic factors. World Applied Sciences Journal 22: 506-515. doi:10.5829/idosi.wasj.2013.22.04.443
  • [17] Das M., Gopalakrishnan R., Kumar D., Gayan J., Baruah I., Veer V., Dutta P. 2014. Spatiotemporal distribution of dengue vectors and identification of high-risk zones in district Sonitpur, Assam, India. Indian Journal of Medical Research 140: 278-284.
  • [18] Getachew D., Tekie H., Gebre-Michael T., Balkew M., Mesfin A. 2015. Breeding sites of Aedes aegypti: potential dengue vectors in Dire Dawa, East Ethiopia. Interdisciplinary Perspectives on Infectious Diseases 2015: 706276. http://dx.doi.org/10.1155/2015/706276
  • [19] Rodrigues M.M., Marques G.R.A.M., Serpa L.L.N., Arduino M.B., Voltolini J.C., Barbosa G.L., Andrade V.R., de Lima V.L.C. 2015. Density of Aedes aegypti and Aedes albopictus and its association with number of residents and meteorological variables in the home environment of dengue endemic area, São Paulo, Brazil. Parasites and Vectors 8: 115. doi:10.1186/s13071-015-0703-y
  • [20] Serpa L.L.N., Marques G.R.A.M., de Lima A.P., Voltolini J.C., Arduino M.B., Barbosa G.L., Andrade V.R., de Lima V.L.C. 2013. Study of the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorological variables, municipality of São Sebastião, São Paulo State, Brazil. Parasites and Vectors 6: 321. doi:10.1186/1756-3305-6-321
  • [21] Quintero J., Brochero H., Manrique-Saide P., Barrera-Pérez M., Basso C., Romero S., Caprara A., de Lima Cunha J.C., Beltrán-Ayala E., Mitchell-Foster K., Kroeger A., Sommerfeld J., Petzold M. 2014. Ecological, biological and social dimensions of dengue vector breeding in five urban settings of Latin America: a multi-country study. BMC Infectious Diseases 14: 38. doi:10.1186/1471-2334-14-38
  • [22] Wai K.T., Arunachalam N., Tana S., Espino F., Kittayapong P., Abeyewickreme W., Hapangama D., Tyagi B.K., Htun T.P., Koyadun S., Kroeger A., Sommerfeld J., Petzold M. 2012. Estimating dengue vector abundance in the wet and dry season: implications for targeted vector control in urban and peri-urban Asia. Pathogens and Global Health 106: 436-445. doi:10.1179/2047773212Y.0000000063
  • [23] Wongbutdee J., Saengnill W. 2015. Aedes aegypti larval habitats and dengue vector indices in a village of Ubonratchathani Province in the North-East of Thailand. Khon Kaen University Research Journal 20: 254-259.
  • [24] Sayono S., Nurullita U. 2016. Situasi terkini vektor dengue [Aedes aegypti] di Jawa Tengah. Kemas 11: 285-294. http://dx.doi.org/10.15294/ kemas.v11i1
  • [25] Lozano-Fuentes S., Hayden M.H., Welsh-Rodriguez C., Ochoa-Martinez C., Tapia- Santos B., Kobylinski K.C., Uejio C.K., Zielinski-Gutierrez E., Monache L.D., Monaghan A.J., Steinhoff D.F., Eisen L. 2012. The dengue virus mosquito vector Aedes aegypti at high elevation in México. American Journal of Tropical Medicine and Hygiene 87: 902-909. doi:10.4269/ajtmh.2012.12-0244
  • [26] Dhimal M., Gautam I., Kreß A., Müller R., Kuch U. 2014. Spatio-temporal distribution of dengue and lymphatic filariasis vectors along an altitudinal transect in Central Nepal. PLoS Neglected Tropical Diseases 8: e3035. doi:10.1371/journal.pntd.0003035
  • [27] Dhimal M., Gautam I., Joshi H.D., O’Hara R.B., Ahrens B., Kuch U. 2015. Risk factors for the presence of Chikungunya and Dengue vectors (Aedes aegypti and Aedes albopictus), their altitudinal distribution and climatic determinants of their abundance in Central Nepal. PLoS Neglected Tropical Diseases 9: e0003545.https://doi.org/10.1371/journal.pntd.0003545
  • [28] Gama Z.P., Nakagoshi N., Islamiyah M. 2013. Distribution patterns and relationship between elevation and the abundance of Aedes aegypti in Mojokerto city 2012. Open Journal of Animal Sciences 3: 11-16. doi:10.4236/ojas.2013.34A1003
  • [29] Ooi E.E., Goh K.T., Gubler D.J. 2006. Dengue prevention and 35 years of vector control in Singapore. Emerging Infectious Diseases 12: 887-893. doi:10.3201/10.3201/eid1206.051210
  • [30] Comprehensive guidelines for prevention and control of dengue and dengue haemorrhagic fever. Revised and expanded edition. 2011. India: WHO Regional Office for South-East Asia. http://www.searo.who.int/entity/vector_borne_tropical_diseases/documents/SEAROTPS60/en/
  • [31] Wijayanti S.P.M., Sunaryo S., Suprihatin S., McFarlane M., Rainey S.M., Dietrich I., Schnettler E., Biek R., Kohl A. 2016. Dengue in Java, Indonesia: Relevance of mosquito indices as risk predictors. PLOS Neglected Tropical Diseases 10: e0004683. https://doi.org/10.1371/journal.pntd.0004683
  • [32] Brady O.J., Johansson M.A., Guerra C.A., Bhatt S., Golding N., Pigott D.M., Delatte H.,Grech M.G., Leisnham P.T., Maciel-de-Freitas R., M Styer L.M., Smith D.L., Scott T.W., Gething P.W., Simon I.H. 2013. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors 6: 351. doi:10.1186/1756-3305-6-351
  • [33] Couret J., Dotson E., Benedict M.Q. 2014. Temperature, larval diet, and density effects on development rate and survival of Aedes aegypti (Diptera: Culicidae). PLoS One 9: e87468. doi:10.1371/journal.pone.0087468
  • [34] Costa E.A.P.A., Santos E.M.M., Correia J.C., Albuquerque C.M.R. 2010. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Revista Brasileira de Entomologia 54: 488-493. http://dx.doi.org/10.1590/S0085-56262010000300021
  • [35] Mohammed A., Chadee D.D. 2011. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica 119: 38-43. doi:10.1016/j.actatropica.2011.04.004
  • [36] Marinho R.A., Beserra E.B., Bezerra-Gusmão M.A., Porto V.S., A. Olinda R.A., Santos C.A.C. 2015. Effects of temperature on the life cycle, expansion, and dispersion of Aedes aegypti (Diptera: Culicidae) in three cities in Paraiba, Brazil. Journal of Vector Ecology 41: 1-10. doi:10.1111/jvec.12187
  • [37] Rochlin I., Ninivaggi D.V., Hutchinson M.L., Farajollahi A. 2013. Climate change and range expansion of the Asian Tiger Mosquito (Aedes albopictus) in northeastern USA: Implications for public health practitioners. PLoS One 8: e60874. https://doi.org/10.1371/ journal.pone.0060874

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-285c95b1-39e3-44aa-99da-f940a29c1834
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.