PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2020 | 164 | 09 |

Tytuł artykułu

Wykorzystanie mszaków i porostów w bioindykacyjnej ocenie pionowego zróżnicowania warunków mikrosiedliskowych ekosystemów leśnych na przykładzie wiatrołomów w Kampinoskim Parku Narodowym

Treść / Zawartość

Warianty tytułu

EN
Application of bryophytes and lichens in the bioindicative assessment of the vertical differentiation of forest ecosystem habitat conditions on the example of windthrowns in the Kampinos National Park

Języki publikacji

PL

Abstrakty

EN
Ecological indicator values (EIV) are a commonly used tool for assessing habitat conditions in various ecosystems. They are relatively rarely used for the analysis of epiphytic communities, which results from objective difficulties in the study of this group of organisms in full height gradient on settled trees. Windthrows provide a rare opportunity to fully analyse the biota diversity of epiphytic bryophytes and lichens. The aim of the study was to determine and compare the EIV variability for bryophytes and lichens in the vertical gradient, from terrestrial to different epiphytic exposures. The fieldworks were carried out on two windthrow areas in the Kampinos National Park (central Poland). A set of floristic lists was prepared within five distinguished parts of trees (trunk base, lower trunk, upper trunk, lower crown and upper crown) and three parts of their uproots (pit, bottom root plate and top root plate) for three species (oak, birch, pine). Ten individuals of each tree species were selected. The average values of five ecological indicator values (light, temperature, continentality, humidity and acidity) were calculated within the examined parts of trees and their uproots. The significance of differences between bryophyte and lichen EIV within same parts of trees and their uproots was checked using Wilcoxon paired test. The significance of differences of EIV calculated for bryophytes and lichens pulled together between distinguished tree and uproot parts were checked with Kruskal−Wallis or Mann−Whitney tests. Ordination of researched parts in terms of their EIV was carried out using NMDS method. The values of individual EIV obtained with the use of bryophytes and lichens for the examined parts of trees and their uproots differed significantly in most cases. The values of temperature and continentality in most cases were significantly higher for lichen, which may indicate the need for additional calibration of these indicators for these groups of organisms. The use of both groups of organisms in bioindication has increased the quantity and quality of available ecological information. The research confirmed the usefulness of ecological indicator values as a tool for analysing general habitat conditions in forest ecosystems.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

164

Numer

09

Opis fizyczny

s.747-757,rys.,tab.,bibliogr.

Twórcy

  • Samodzielny Zakład Botaniki Leśnej, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul Nowoursynowska 159, 02-776 Warszawa
autor
  • Instytut Biologii, Biotechnologii i Ochrony Środowiska, Uniwersytet Śląski, ul. Jagiellońska 28, 40-032 Katowice

Bibliografia

  • Barkman J. J. 1958. On the ecology of cryptogamic epiphytes. Van Gorcum, Assen.
  • Batista W. V. S. M., dos Santos N. D. 2016. Can regional and local filters explain epiphytic bryophyte distributions in the Atlantic Forest of southeastern Brazil? Acta Botanica Brasilica 30 (3): 462-472. DOI: https://doi.org/10.1590/ 0102-33062016abb0179.
  • Berg C., Welk E., Jäger E. J. 2017. Revising Ellenberg’s indicator values for continentality based on global vascular plant species distribution. Applied Vegetation Science 20: 482-493.
  • Berthelsen K., Olsen H., Sřchting U. 2008. Indicator values for lichens on Quercus as a tool to monitor ammonia pollution in Denmark. Sauteria 15: 55-77.
  • Boch S., Müller J., Prati D., Blaser S., Fischer M. 2013. Up in the tree – the overlooked richness of bryophytes and lichens in tree crowns. PLoS ONE 8 (12): e84913. DOI: https://doi.org/10.1371/journal.pone.0084913.
  • Borhidi A. 1995. Social behaviour types, the naturalness and relative ecological indicator values of the higher plants in the Hungarian flora. Acta Botanica Hungarica 39: 97-181.
  • Botta-Dukát Z., Ruprecht E. 2000. Using concentration analysis for operating with indicator values: effect of grouping species. Acta Botanica Hungarica 42: 55-63.
  • Chrzan A. 2015. Necrotic bark of common pine (Pinus sylvestris L.) as a bioindicator of environmental quality. Environmental Science and Pollution Research 22: 1066-1071.
  • Chytrý M., Tichý L., Dřevojan P., Sádlo J., Zelený D. 2018. Ellenberg-type indicator values for the Czech flora. Preslia 90: 83-103. DOI: https://doi.org/10.23855/preslia.2018.083.
  • Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology – a review. Basic and Applied Ecology 4: 493-506.
  • Ellenberg H. 1974. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica 9: 1-97.
  • Ellenberg H., Leuschner C. 2010. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. Ed. 6. Ulmer, Stuttgart.
  • Ellenberg H., Weber H. E., Düll R., Wirth V., Werner W., Paulißen D. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 1-248.
  • Fabiszewski J., Szczepańska K. 2010. Ecological indicator values of some lichens noted in Poland. Acta Societatis Botanicorum Poloniae 79 (4): 305-313.
  • Fojcik B., Chruścińska M., Nadgórska-Socha A. 2017. Epiphytic habitats in an urban environment; contamination by heavy metals and sulphur in the bark of different tree species. Polish Journal of Natural Sciences 32 (2): 283-295.
  • Friedel A., Müller F. 2004. Bryophytes and lichens as indicators for changes of air pollution in the Serrahn Natural Forest Reserve (Mueritz National Park). Herzogia 17: 279-286.
  • Friedel A., Oheimb G., Dengler J., Härdtle W. 2006. Species diversity and species composition of epiphytic bryophytes and lichens – a comparison of managed and unmanaged beech forests in NE Germany. Feddes Repertorium 117 (1-2): 172-185. DOI: https://doi.org/10.1002/fedr.200511084.
  • Fritz Ö. 2009. Vertical distribution of epiphytic bryophytes and lichens emphasizes the importance of old beeches in conservation. Biodiversity and Conservation 18: 289-304. DOI: https://doi.org/10.1007/s10531-008-9483-4.
  • Fritz Ö., Heilmann-Clausen J. 2010. Rot holes create key microhabitats for epiphytic lichens and bryophytes on beech (Fagus sylvatica). Biological Conservation 143: 1008-1016. DOI: https://doi.org/10.1016/j.biocon.2010.01.016.
  • Gustafsson L., Eriksson I. 1995. Factors of importance for the epiphytic vegetation of Aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. Journal of Applied Ecology 32 (2): 412-424. DOI: https:// doi.org/10.2307/2405107.
  • Hammer Ř., Harper D. A. T., Ryan P. D. 2001. Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4 (1): 1-9.
  • Harris G. P. 1971. The ecology of corticolous lichens. 1. The zonation on oak and birch in South Devon. Journal of Ecology 59 (2): 431-439. DOI: https://doi.org/10.2307/2258323.
  • Horsák M., Hájek M., Tichý L., Juřičková L. 2007. Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecologica 32: 161-171. DOI: https://doi.org/10.1016/j.actao.2007.03.011.
  • Hosokawa T., Odani N. 1957. The daily compensation period and vertical ranges of epiphytes in a beech forest. Journal of Ecology 45 (3): 901-905. DOI: https://doi.org/10.2307/2256963.
  • Humphrey J. W., Davey S., Peace A. J., Ferris R., Harding K. 2002. Lichens and bryophyte communities of planted and semi-natural forests in Britain: the influence of site type, stand structure and deadwood. Biological Conservation 107: 165-180. DOI: https://doi.org/10.1016/S0006-3207(02)00057-5.
  • Ilek A., Kucza J., Morkisz K. 2017. Hygroscopicity of the bark of selected forest tree species. iForest 10: 220-226. DOI: https://doi.org/10.3832/ifor1979-009.
  • Kenkel N. C., Bradfield G. E. 1981. Ordination of epiphytic bryophyte communities in a wet-temperate coniferous forest, South-Coastal British Columbia. Vegetatio 45: 147-154. DOI: https://doi.org/10.1007/BF00054669.
  • Kermit T., Gauslaa Y. 2001. The vertical gradient of bark pH of twigs and macrolichens in a Picea abies canopy not affected by acid rain. The Lichenologist 33 (4): 353-359. DOI: https://doi.org/10.1006/lich.2001.0326.
  • Király I., Nascimbene J., Tinya F., Ódor P. 2013. Factors influencing epiphytic 3 bryophyte and lichen species richness at different spatial scales in managed temperate 4 forests. Biodiversity and Conservation 22 (1): 209-223. DOI: https://doi.org/10.1007/s10531-012-0415-y.
  • Levia D. F. Jr., Wubbena N. P. 2006. Vertical variation of bark water storage capacity of Pinus strobus L. (Eastern White Pine) in Southern Illinois. Northeastern Naturalist 13 (1): 131-137. DOI: https://doi.org/10.1656/1092-6194(2006)13[131:VVOBWS]2.0.CO;2.
  • Marmor L., Tőrra T., Randlane T. 2010. The vertical gradient of bark pH and epiphytic macrolichen biota in relation to alkaline air pollution. Ecological Indicators 10 (6): 1137-1143. DOI: https://doi.org/10.1016/j.ecolind.2010.03.013.
  • Meţaka A., Brűmelis G., Piterâns A. 2008. The distribution of epiphytic bryophyte and lichen species in relation to phorophyte characters in Latvian natural old-growth broad leaved forests. Folia Cryptogamica Estonica 44: 89-99.
  • Meţaka A., Znotiňa V. 2006. Epiphytic bryophytes in old growth forests of slopes, screes and ravines in north-west Latvia. Acta Universitatis Latviensis 710: 103-116.
  • Nadkarni N. M., Geoffrey G., Parker G. G., Lowman M. D. 2011. Forest canopy studies as an emerging field of science. Annals of Forest Science 68 (2): 217-224. DOI: https://doi.org/10.1007/s13595-011-0046-6.
  • Nash T. H. [red.]. 2008. Lichen Biology. Cambridge, Cambridge University Press. DOI: https://doi.org/10.1017/ CBO9780511790478.
  • Ódor P., Király I., Tinya F., Bortignon F., Nascimbene J. 2013. Patterns and drivers of species composition of epiphytic bryophytes and lichens in managed temperate forests. Forest Ecology and Management 306: 256-265. DOI: http://dx.doi.org/10.1016/j.foreco.2013.07.001.
  • Putna S., Mežaka A. 2014. Preferences of epiphytic bryophytes for forest stand and substrate in North-East Latvia. Folia Cryptogamica Estonica 51: 75-83. DOI: http://dx.doi.org/10.12697/fce.2014.51.08.
  • Ranius T., Johansson P., Niclas B., Niklasson M. 2008. The influence of tree age and microhabitat quality on the occurrence of crustose lichens associated with old oaks. Journal of Vegetation Science 19: 653-662. DOI: https://doi.org/10.3170/2008-8-18433.
  • Sales K., Kerr L., Gardner J. 2016. Factors influencing epiphytic moss and lichen distribution within Killarney National Park. Bioscience Horizons 9: 1-12.
  • Schaffers A. P., Sýkora K. V. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11: 225-244. DOI: https://doi.org/10.2307/ 3236802.
  • Schenková V., Horsák M., Plesková Z., Pawlikowski P. 2012. Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. Journal of Molluscan Studies 78: 105-111. DOI: https://doi.org/ 10.1093/mollus/eyr046.
  • Sillett S. C., Antoine M. E. 2004. Lichens and bryophytes in forest canopies. W: Lowman M. D., Rinker H. B. [red.]. Forest canopies 2. San Diego, London, Elsevier Academic Press. 151-174. DOI: https://doi.org/10.1016/B978-0-12-457553-0.X5000-X.
  • Sillett S. C., Rambo T. R. 2000. Vertical distribution of dominant epiphytes in Douglas-fir forests of the central Oregon Cascades. Northwest Science 74 (1): 44-49.
  • Smith A. J. E. 1982. Epiphytes and epiliths. W: Smith A. J. E. [red.]. Bryophyte ecology. Chapman and Hall, London. 191-227. DOI: https://doi.org/10.1007/978-94-009-5891-3_7.
  • Sporn S. G., Bos M. M., Kessler M., Gradstein S. R. 2010. Vertical distribution of epiphytic bryophytes in an Indonesian rainforest. Biodiversity and Conservation 19: 745-760. DOI: https://doi.org/10.1007/s10531-009-9731-2.
  • Strazdiňa L. 2010. Bryophyte community composition on an island of Lake Cieceres, Latvia: dependence on forest stand and substrate properties. Environmental and Experimental Biology 8: 49-58.
  • Trynoski S. E., Glime J. M. 1982. Direction and height of bryophytes on four species of northern trees. The Bryologist 85: 281-300. DOI: https://doi.org/10.2307/3243047.
  • Vanderpoorten A., Goffinet B. 2009. Introduction to bryophytes. Cambridge University Press, Cambridge. DOI: https://doi.org/10.1017/CBO9780511626838.
  • Zaniewski P. T., Szczepkowski A., Gierczyk B., Kujawa A., Ślusarczyk T., Fojcik B. 2019. Pionowe zróżnicowanie bogactwa i składu gatunkowego myko-, licheno- i briobioty drzew powiatrołomowych w Kampinoskim Parku Narodowym. Sylwan 163 (12): 980-988. DOI: https://doi.org/10.26202/sylwan.2019091.
  • Zarzycki K., Trzcińska-Tacik H., Różański W., Szeląg Z., Wołek J., Korzeniak U. 2002. Ecological indicator values of vascular plants of Poland. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków.

Typ dokumentu

Bibliografia

Identyfikatory

DOI

Identyfikator YADDA

bwmeta1.element.agro-26ee9f81-a1d5-4690-be2e-3e191ca89321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.