PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 23 | 4 |

Tytuł artykułu

Hygroscopic moisture content of podzolic soil with biochar

Treść / Zawartość

Warianty tytułu

PL
Zawartość wody higroskopowej w glebie płowej z biowęglem

Języki publikacji

EN

Abstrakty

EN
The main goal of this study was to investigate the effect of biochar on hygroscopic water content (maximum hygroscopicity) of grey-brown podzolic soil (Haplic Luvisol). The biochar was applied to the soil of sub-plots under fallow and grassland in the amount of 0 (control), 10, 20 and 30 Mg·haˉ¹. Soil samples were taken three times per year during the period of 2013-2015. Sorption isotherms of water vapour were determined for all studied samples and the maximum hygroscopicity (MH) was calculated from the relative water vapour pressure at p·p0ˉ¹ = 0.965. Value of the MH varied from 1.5 to 3%. The effect of biochar addition to soil on hygroscopic water content was ambiguous. Addition of biochar caused a slight decrease in MH value in the case of the grassland. For the fallow, a positive effect of biochar addition was observed.
PL
Głównym celem pracy było zbadanie wpływu biowęgla na maksymalną higroskopijność gleby płowej. Biowęgiel dodawano na poletka ugorowane i obsiane trawą w ilości 0 (kontrola), 10, 20 i 30 Mg·haˉ¹. Próbki gleby pobierano trzykrotnie w ciągu roku w latach 2013-2015. Izotermy sorpcji pary wodnej zostały wyznaczone dla wszystkich badanych próbek, a maksymalną higroskopijność (MH) obliczono przy względnym ciśnieniu pary wodnej p·p0ˉ¹ = 0,965. Wartość MH wahała się w zakresie 1,5-3,3%. Wpływ dodatku biowęgla na maksymalną higroskopijność był niejednoznaczny. Dodatek biowęgla spowodował nieznaczny spadek MH w przypadku poletek obsianych trawą i wzrost w przypadku ugoru.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

23

Numer

4

Opis fizyczny

p.533-543,fig.,ref.

Twórcy

autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland
autor
  • Institute of Agrophysics, Polish Academy of Sciences, Doswiadczalna 4, 20-290 Lublin, Poland

Bibliografia

  • Abel S., Peters A., Trinks S., Schonsky H., Facklam M.,Wessolek G., 2013. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202-203, 183-91.
  • Ajayi A.E., Horn R., 2016. Modification of chemical and hydrophysical properties of two texturally differentiated soils due to varying magnitudes of added. Soil Till. Res., 164, 34-44.
  • Amer A.M., 2009. Moisture adsorption capacity and surface area as deduced from water vapor pressure isotherms in relation to hygroscopic water in soils. Biologia 64, 516-521.
  • Amer A.M.,2015. Water vapor adsorption and soil wetting. http://dx.doi. org/10.5772/60953.
  • Aslam Z., Khalid M, Aon M., 2014. Impact of biochar on soil physical properties. SJAS, 4, 280-284.
  • Boguta P., Sokołowska Z., 2014. Statistical relationship between selected physicochemical properties of peaty-muck soils and their fraction of humic acids. Int. Agrophys., 28, 269-278.
  • Bryś K., 2008. Long-term influence of plant cover on soil temperature (in Polish). Acta Agroph. 12, 39-53.
  • Castellini M., Giglio L., Niedda M., Paulumbo A.D., Ventrella D., 2015. Impact of biochar addition on the physical and hydraulic properties of a clay soil. Soil Till. Res., 154, 1-13.
  • Chen C., Ren T., Hu K., Li B., Wang Y., 2013. Estimation of soil clay content using hygroscopic water content at an arbitrary humidity. Soil Sci. Soc. Am. J., 78, 119-124.
  • Chun Y., Sheng G. Chiou C.T., Xing B., 2004. Compositions and sorptive properties of crop residue- derived chars. Environ. Sci. Technol., 38, 4649-4655.
  • Eamaeilzadeh J., Ahangar A.G., 2014. Influence of soil organic matter content on soil physical, chemical and biological properties. Int. J. Pl. An. and Env. Sci., 4, 244-252.
  • Gray M., Johson M.G., Dragila M.I., Kleber M., 2014. Water uptake in biochar: The role of porosity and hydrophobicity. Biomass Bioenerg., 61, 196-205.
  • Gregg S. J., Sing K. S. W., 1978. Adsorption, surface area and porosity. Acad. Press, London, N.Y.
  • Gul, S., Whalen, J.K., Thomas, B.W., Sachdeva, V., Deng, H.Y., 2015. Physicochemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric. Ecosyst. Environ., 206, 46-59.
  • IUSS Working Group WRB. 2006. World reference base for soil resources. 2nd edition. World Soil Resources Reports No. 103. FAO Rome.
  • Jindo K., Mizumoto H., Sawada Y., Sanchez-Monedero M.A., Sonoki T., 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11, 6613-6621.
  • Keiluweit M., Nico P.S., Johson M.G., Kleber M., 2010. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol., 44, 1247-1253.
  • Król H., 1963. Water-air conditions in soil of the middle climatic zone of Poland (in Polish). Rocz. Glebozn. XIII,1 11-139.
  • Lehmann J., Joseph S., 2009. Biochar for environmental management: an introduction. In: Biochar for environmental management (Eds J. Lehmann, S. Joseph). Science and Technology. Earthscan, London, pp. 1-12.
  • Lei O., Zhang R., 2013. Effects of biochars derived from different feedstocks and pyrolysis temperature on soil physical and hydraulic properties. J. Soils Sediments, 13, 1561-1572.
  • Matiushkina L.A., Kharitonova G.V., 2015. Effect of humic substances and clay minerals on the hydrosorption capacity of clay particles in meadow soils (Middle Priamurje, Far East of Russia). Chem. Biol. Technol. Agric., 2, 18, 1-9.
  • Murphy B., 2015. Key soil functional properties affected by soil organic matter - evidence from published literature. IOP Confer. Series: Earth and Environmental Science 25, 012008, doi: 10.1088/1755-1315/251/012008.
  • Podstawka-Chmielewska E., Kurus J., 2011. The influence of the method of fallowing on some physical properties of soil. Fragm. Agron., 28, 71-78 (in Polish).
  • Poeplau C., Eriksson J., Kätterer T., 2015. Estimating residual water content in air-dried soil from organic carbon and clay content. Soil Till. Res., 145, 181-183.
  • Polish Standard PN-Z-19010-1, 1997. Soil Quality. Determination of the specific surface area of soils by water sorption (BET) (in Polish).
  • Prakash K., Sridharan M.E., Sudheendra B.E., 2014. Hygroscopic moisture content: determination and correlations. Environmental Geotechnics, DOI: http://dx doi org/10 1680envgeo.1400008
  • Pranagal J., Podstawka-Chmielewska E., Słowińska-Jurkiewicz A., 2007. Influence on selected physical properties of a Haplic podzol during a ten-year fallow period. Pol. J. Environ. Stud., 16, 875-880.
  • Schneider M., Goss U., 2012. Prediction of the water sorption isotherm in air dry soils. Geoderma 170, 64-69.
  • Ścisłowska M., Włodarczyk M., Kobyłecki R., Bis Z., 2015. Biochar to improve the quality and productivity of soils. J. Ecol. Eng., 16, 31-35.
  • Shah P.H., Singh D.N., 2006. Methodology for determination of hygroscopic moisture content in soils. Journal of ASTM International 3, ID JAI13376, www.astm.org.
  • Sun F., Lu S., 2014. Biochars improve aggregate stability, water retention, and pore- space properties of clayey soil. J. Plant Nutr. Soil Sci., 177, 26-33.
  • Trzecki S., 1976. Possibility of determination of the moisture permanent wilting of plants on the basis of maximal higroscopicity and content of clayey particles in mineral soils (in Polish). Rocz. Glebozn. XXVII, 11-18.
  • Usowicz B., Lipiec J., Łukowski M., Marczewski W., 2016. The effect of biochar application on thermal properties and albedo of loess soil under grassland and fallow. Soil Till. Res. 164, 45-51.
  • Walczak R., Ostrowski J., Witkowska-Walczak B., Sławiński C., 2002. Hydrophysical characteristics of Polish arable soils (in Polish). Acta Agroph., 79.
  • Xie T., Sadasivam B. Y., Reddy K. R., Wang C., Spokas K., 2015. Review of the effects of biochar amendment on soil properties and carbon sequestration. J. Hazard. Toxic Radioact. Waste, 20(1), 04015013.
  • Yargicoglu E.N., Sadasivam B.Y., Reddy K.S., Spokas K. 2015. Physical and chemical characterization of waste wood derived biochars. Waste Manage., 36, 256-268.
  • Zhao L., Cao X., Mašek O., Zimmerman A., 2013. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater., 256, 1-9.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-23ebf247-c31f-45be-967b-0a6d0d3df2c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.