PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 17 | 2 |

Tytuł artykułu

Interaction of selected anthocyanins with erythrocytes and liposome membranes

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Anthocyanins are one of the main flavonoid groups. They are responsible for, e.g., the color of plants and have antioxidant features and a wide spectrum of medical activity. The subject of the study was the following compounds that belong to the anthocyanins and which can be found, e.g., in strawberries and chokeberries: callistephin chloride (pelargonidin-3-O-glucoside chloride) and ideain chloride (cyanidin-3-O-galactoside chloride). The aim of the study was to determine the compounds’ antioxidant activity towards the erythrocyte membrane and changes incurred by the tested anthocyanins in the lipid phase of the erythrocyte membrane, in liposomes composed of erythrocyte lipids and in DPPC, DPPC/cholesterol and egg lecithin liposomes. In particular, we studied the effect of the two selected anthocyanins on red blood cell morphology, on packing order in the lipid hydrophilic phase, on fluidity of the hydrophobic phase, as well as on the temperature of phase transition in DPPC and DPPC/cholesterol liposomes. Fluorimetry with the Laurdan and Prodan probes indicated increased packing density in the hydrophilic phase of the membrane in the presence of anthocyanins. Using the fluorescence probes DPH and TMA-DPH, no effect was noted inside the hydrophobic phase of the membrane, as the lipid bilayer fluidity was not modified. The compounds slightly lowered the phase transition temperature of phosphatidylcholine liposomes. The study has shown that both anthocyanins are incorporated into the outer region of the erythrocyte membrane, affecting its shape and lipid packing order, which is reflected in the increasing number of echinocytes. The investigation proved that the compounds penetrate only the outer part of the external lipid layer of liposomes composed of erythrocyte lipids, DPPC, DPPC/cholesterol and egg lecithin lipids, changing its packing order. Fluorimetry studies with DPH-PA proved that the tested anthocyanins are very effective antioxidants. The antioxidant activity of the compounds was comparable with the activity of Trolox®.

Wydawca

-

Rocznik

Tom

17

Numer

2

Opis fizyczny

p.289-308,fig.,ref.

Twórcy

  • Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
autor

Bibliografia

  • 1. Santos-Buelga, C., Escribano-Bailon, M.T. and Lattanzio, V. Recent advances in polyphenol research, Volume 2, Wiley-Blackwell, 2010, Oxford, UK.
  • 2. Bridle, P. and Timberlake, C.F. Anthocyanins as natural food colours – selected aspects. Food Chem. 58 (1997) 101-109.
  • 3. Chen, P.N., Chu, S.C., Chiou, H.L., Kuo, W.H., Chiang, C.L. and Hsieh, Y.S. Mulberry anthocyanins, cyaniding 3-rutinoside and cyaniding 3-glucoside, exhibited an inhibitory effect on the migration and invasion on human lung cancer cell line. Cancer Lett. 235 (2006) 248-259.
  • 4. Feng, R., Ni, N.M., Wang, S.Y., Tourkova, I.L., Shurin, M.R., Harada, H. and Yin, X.M. Cyanidin 3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J. Biol. Chem. 282 (2007) 13468-13476.
  • 5. Kong, J-M., Chia, L-S., Goh, N-K., Chia, T-F. and Brouillard, R. Analysis and biological activities of anthocyanins. Phytochemistry 64 (2003) 923-933.
  • 6. Galvano, F., La Fauci, L., Lazzarino, G., Fogliano, V., Ritieni, A., Ciappellano, S., Battistini, N.C., Tavazzi, B. and Galvano, G. Cyanidins: metabolism and biological properties. J. Nutr. Biochem. 15 (2004) 2-11.
  • 7. Wesołowska, O., Kużdżał, M., Štrancar, J. and Michalak, K. Interaction of chemopreventive agent resveratrol and its metabolite piceatannol with model membranes. Biochim. Biophys. Acta 1788 (2009) 1851-1860.
  • 8. Gąsiorowski, K., Szyba, K., Brokos, B., Kołaczyńska, B., JankowiakWłodarczyk, M. and Oszmiański, J. Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett. 119 (1997) 37-46.
  • 9. Mudnic, I., Modun, D., Brizic, I., Vukovic, J., Generalic, I., Katalinic, V., Bilusic, T., Ljubenkov, I. and Boban, M. Cardiovascular effect in vitro of aqueous extract of wild strawberry (Fragaria vesca. L.) leaves. Phytomedicine 16 (2009) 462-469.
  • 10. Zduńczyk, Z., Frejnagel, S., Wróblewska, M., Juśkiewicz, J., Oszmiański, J. and Estrella, I. Biological activity of polyphenol extracts from different plant sources. Food Res. Int. 35 (2002) 183-186.
  • 11. Stintzing, F.C. and Carle, R. Functional properties of anthocyanins and betalains in plants, food and in human nutrition. Trends Food Sci. Technol. 15 (2004) 19-38.
  • 12. Kondo, S., Yoshikawa, H. and Miwa, N. Cytoprotective effect of fruit extracts associated with antioxidant activity against ultraviolet rays. Food Chem. 104 (2007) 1272-1276.
  • 13. Gabrielska, J., Oszmiański, J., Komorowska, M. and Langner, M., Anthocyanin extracts with antioxidant and radical scavenging effect. Z. Naturforsch. C 54 (1999) 319-324.
  • 14. Bukowska, B., Michałowicz, J., Krokosz, A. and Sicińska, P. Comparison of the effect of phenol and its derivatives on protein and free radical formation in human erythrocytes (in vitro). Blood Cells Mol. Dis. 39 (2007) 238-244.
  • 15. Chaudhuri, S., Banerjee, A., Basu, K., Sengupta, B. and Sengupta, P.K. Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects. Int. J. Biol. Macromol. 41 (2007) 42-48.
  • 16. Pawlikowska-Pawlęga, B., Gruszecki, W.I., Misiak, L.E. and Gawron, A. The study of the quercetin action on human erythrocyte membranes. Biochem. Pharmacol. 66 (2003) 605-612.
  • 17. Suwalsky, M., Orellana, P., Avello, M. and Villena, F. Protective effect of Ugni molinae Turcz against oxidative damage of human erythrocytes. Food Chem. Toxicol. 45 (2007) 130-135.
  • 18. Suwalsky, M., Vargas, P., Avello, M., Villena, F. and Sotomayor, C.P. Human erythrocytes are affected in vitro by flavonoids of Aristotelia chilensis (Maqui) leaves. Int. J. Pharm. 363 (2008) 85-90.
  • 19. Arora, A., Byren, T.M., Nair, M.G. and Strasburg, G.M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch. Biochem. Biophys. 373 (2000) 102-109.
  • 20. Chaudhuri, S., Biswapathik, P. and Sengupta, P.K. Ground and excited state proton transfer and antioxidant activity of 7-hydroxyflavone in model membranes: Absorption and fluorescence spectroscopic studies. Biophys. Chem. 139 (2009) 29-36.
  • 21. Perez-Fons, L., Garzon, M.T. and Micol, V. Relationship between the antioxidant capacity and effect of rosemary (Rosmarinus officinalis L.) polyphenols on membrane phospholipid order. J. Agric. Food. Chem. 58 (2010) 161-171.
  • 22. Bonarska-Kujawa, D., Pruchnik, H., Oszmiański, J., Sarapuk, J. and Kleszczyńska, H. Changes caused by fruit extracts in the lipid phase of biological and model membranes. Food Biophys. 6 (2011) 58-67.
  • 23. Maddy, A.H., Dunn, M.J. and Kelly, P.G. The characterisation of membrane proteins by centrifugation and gel electrophoresis. A comparison of proteins prepared by different methods. Biochim. Biophys. Acta 288 (1972) 263-278.
  • 24. Dodge, J.T., Mitchell, C. and Hanahan, D.J. The preparation and chemical characteristics of hemoglobin-free ghosts of erythrocytes. Arch. Biochem. 100 (1963) 119-130.
  • 25. Bradford, M.M. Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 248-254.
  • 26. Deuticke, B. Membrane lipids and proteins as a basis of red cell shape and its alternations. In: Red Cell Membrane Transport in Health and Disease. (Bernhardt, I. and Ellory, J.C. Eds.). Springer 2003, 27-60.
  • 27. Lakowicz, J.R. Fluorescence polarization. In: Principles of Fluorescence Spectroscopy. Plenum Press. New York. London. 2006, 353-382.
  • 28. Bagatolli, L.A., Maggio, B., Aguilar, F., Sotomayor, C.P. and Fidelio, G.D. Laurdan properties in glycosphingolipid-phospholipid mixtures: a comparative fluorescence and calorimetric study. Biochim. Biophys. Acta 1325 (1997) 80-90.
  • 29. Parasassi, T., Krasnowska, E.K., Bagatolli, L. and Gratton, E. Laurdan and Prodan as polarity-sensitive fluorescent membrane probes. J. Fluoresc. 8 (1998) 365-373.
  • 30. Iglic, A., Kralj-Iglic, V. and Hagerstand, V.H. Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape. Eur. Biophys. J. 27 (1998) 335-339.
  • 31. Isomaa, B., Hagerstrand, H. and Paatero, G. Shape transformations induced by amphiphiles in erythrocytes. Biochim. Biophys. Acta 899 (1987) 93-103.
  • 32. Sheetz, M.P. and Singer, S.J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proc. Nat. Acad. Sci. USA 71 (1974) 4457-4461.
  • 33. Harris, F.M., Best, K.B. and Bell, J.D. Use of Laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order. Biochim. Biophys. Acta 1565 (2002) 123-128.
  • 34. Dumas, D., Muller, S., Gouin, F., Baros, F., Viriot, M-L. and Stoltz, J.F. Membrane fluidity and oxygen diffusion in cholesterol-enriched erythrocyte membrane. Arch. Biochem. Biophys. 341 (1997) 34-39.
  • 35. Tiera, V.A.O., Winnik, F.M. and Tiera, M.J. Interaction of amphiphilic derivatives of chitosan with DPPC (1,2-dipalmitoyl-sn-glycero-3- phosphocholine). J. Therm. Anal. Calorim. 100 (2010) 309-313.
  • 36. Arora, A. and Strasburg, G.M. Development and validation of fluorescence spectroscopic assays to calculate antioxidant efficacy. J. Am. Oil Chem. Soc. 74 (1997) 1031-1040.
  • 37. Massey, J.B. Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim. Biophys. Acta 1510 (2001) 167-184.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-223ab747-e7cc-4796-b271-835692f97a09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.