PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 37 | 02 |

Tytuł artykułu

Genetic variability in proso millet [Panicum miliaceum] germplasm of Central Himalayan Region based on morpho-physiological traits and molecular markers

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sixteen representative accessions of proso millet [Panicum miliaceum] having distinct traits of agronomic importance were collected from altitudinal range of 510–2,695 m asl in the Central Himalayan Region (CHR) of India. Considerable diversity was found in morphophysiological traits viz., leaf length (16.80–32.00 cm), leaf width (1.7–2.1 cm), plant height (57.00–134.00 cm), days to 50 % flowering (34–54), days to 80 % maturity (111–144), and 1,000 seed weight (0.68–1.86 g). Collected accessions have been evaluated for a battery of biochemical parameters viz., chlorophyll, carotenoids, lipid peroxidation, cellular hydrogen peroxide, activity of nitrate reductase, lipoxygenase, catalase, peroxidase, superoxide dismutase along with super oxide free radical formation, glutathione (total, reduced, and oxidized), glutathione reductase, glutathione S-transferase, ascorbate (total, reduced, and oxidized), monodehydroascorbate reductase, and didehydroascorbate reductase. The sets of 12 genic- SSRs (simple sequence repeats), 54 ISSR (inter simple sequence repeats), and 40 SRAP (sequence related amplified polymorphism) markers were used to study the level of genetic diversity, and Nei’s gene diversity value of 0.20 was obtained with both ISSR and SRAP markers. SRAP markers showed higher average number of polymorphic bands, % polymorphism, polymorphic information content (PIC), and Shannon information index compared to ISSR markers; genic-SSRs showed no allelic variation. Cluster analysis shows close groupings of germplasm based on morpho-physiological traits as well as molecular markers. The diverse germplasm identified based on molecular markers with considerable diversity in morpho-physiological traits may be utilized for development of climate resilient cultivars.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

37

Numer

02

Opis fizyczny

Article: 23 [16 p.], fig.,ref.

Twórcy

autor
  • National Bureau of Plant Genetic Resources (ICAR), Regional Station Bhowali (Niglat), Nainital 263132, Uttarakhand, India
autor
  • National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
autor
  • National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
autor
  • National Bureau of Plant Genetic Resources (ICAR), Regional Station Bhowali (Niglat), Nainital 263132, Uttarakhand, India
autor
  • National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi 110012, India
  • Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India

Bibliografia

  • Ajithkumar IP, Panneerselvam R (2013) Analysis of intra specific variation in Setaria italica (L.) P. Beauv landraces using RAPD and ISSR markers. Int J Res Biochem Biophys 3(2):15–20
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress and signal transduction. Ann Rev Plant Biol 55:373–399
  • Arya L, Verma M, Gupta VK, Seetharam A (2013) Use of genomic and genic SSR markers for assessing genetic diversity and population structure in Indian and African finger millet (Eleusine coracana (L.) Gaertn.) germplasm. Plant Syst Evol 299:1395–1401. doi:10.1007/s00606-013-0822-x
  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotech Adv 27:84–93
  • BeauchampC, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide. Anal Biochem 44:276–287
  • Begna SH, Smith DL, Hamilton RI, Dwyer LM, Stewart DW (2001) Corn genotypic variation effects on seedling emergence and leaf appearance of short-season areas. J Agro Crop Sci 186:267–271
  • Beryl J, Kumar M, Vaishnavi IR (2012) Nutrient and antioxidant analysis of raw and processed minor millets. Elixir Food Sci 52A: 11279–11282
  • Bostock RM, Yamamoto H, Choi D, Ricker KE, Ward BL (1992) Rapid stimulation of 5-lipoxinase activity in potato by fungal elicitor arachidonic acid. Plant Physiol 100:1448–1456
  • Bowler C, Van Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116
  • Britto DT, Kronzucker HJ (2002) NH4? toxicity in higher plants: a critical review. J Plant Physiol 159(6):567–584
  • Campa A (1991) Biological role of plant peroxidases: Known and potential functions. In: Everse J, Everse KE, Grisham MB (eds) Peroxidases in chemistry and biology. CRC Press Inc, FL, pp 25–50
  • Cockram J, Jones H, Leigh FJ, O’ Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes domestication and sustainable productivity. J Exp Bot 58:1231–1244
  • Cordemener J, Booij H, van Zandt H, van Engelen F, van Kammen A, de Vries S (1991) Tunicamycin-inhibited carrot somatic embryogenesis can be restored by secreted cationic peroxidase isozymes. Planta 184:478–486
  • Dat JF, Lopez-Delgado H, Foyer CH, Scott IM (1998) Parallel changes in H2O2 and catalase during thermo tolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol 116:1351–1357
  • Dhindsa RS, Matowe W (1981) Drought tolerance in two mosses: Correlated with enzymatic defense against lipid peroxidation. J Exp Bot 32:79–91
  • Drotar A, Phelbs P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42:32–40
  • Duxbury AC, Yentshe CS (1956) Plankton pigment monographs. J Marine Res 15:19–101
  • El Adil AH, El Siddig Marmar A, Abdel WH, Abdalla ID, Baenziger Stephen (2014) SSR and SRAP markers-based genetic diversity in Sorghum (Sorghum bicolor (L.) Moench) accessions of Sudan. Int J Plant Breed Genet 8:89–99
  • Fadzilla NM, Finch RP, Burdon RH (1997) Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. J Exp Bot 48:325–331
  • Falster DS, Westoby M (2003) Plant height and evolutionary games. Trends Ecol Evol 18:337–343
  • Forde BG, Clarkson DT (1999) Nitrate and ammonium nutrition of plants: physiological and molecular perspectives. Adv Bot Res 30(C):1–90
  • Glass ADM, Siddiqi MY (1995) Nitrogen absorption by plant roots. In: Srivastava HS, Singh RP (eds) Nitrogen nutrition in higher plants. Associated Publishing, Singapore, pp 21–56
  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analyt Biochem 106:207–212
  • Gupta S, Kumari K, Sahu PP, Vidapu S, Prasad M (2012) Sequencebased novel genomic microsatellite markers for robust genotyping purposes in foxtail millet [Setaria italica (L.) P. Beauv.]. Plant Cell Rep 31(2):323–337
  • Gupta S, Kumari K, Muthamilarasan M, Parida SK, Prasad M (2014) Population structure and association mapping of yield contributing agronomic traits in foxtail millet. Plant Cell Rep 881:893
  • Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendson Press, Oxford, UK
  • Heath RL, Packer K (1968) Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 32:93–101
  • Hossain MA, Asada K (1984) Purification of dehydroascorbate reductase from spinach and its characterization as a thiol enzyme. Plant Cell Physiol 25:85–92
  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395
  • Ishikawa T, Sakai K, Takeda T, Shigeoka S (1993) Hydrogen peroxide generation in organelles of Euglena gracilis. Phytochem 33:1297–1299
  • Jagtap V, Bhargava S (1995) Variation in the antioxidant metabolism of drought tolerant and drought susceptible varieties of Sorghum bicolor (L.) Moench. exposed to high light, low water and high temperature stress. J Plant Physiol 145:195–197
  • Jouili H, Bouazizi H, Ferjani EE (2011) Plant peroxidases: biomarkers of metallic stress. Acta Physiol Plant 33(6):2075–2082
  • Karam D, Westra P, Nissen SJ, Ward SM, Figueiredo JEF (2004) Genetic diversity among proso millet (Panicum miliaceum L.) biotypes assessed by AFLP technique. Planta Daninha 22(2):167–174. doi:10.1590/S0100-83582004000200001
  • Karam D, Westra P, Niessen SJ, Sarah MW, Figueiredo JEF (2006) Assessment of silver-stained AFLP markers for studying DNA polymorphism in proso millet (Panicum miliaceum L.). Revista Brasileira de Botanica 29(4):609–615
  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9:627–640
  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: An ecletic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650
  • Knorzer OC, Durner J, Boger P (1996) Alterations in the antioxidative system of suspension-cultured soybean cells (Glycine max) induced by oxidative stress. Physiol Plant 97:388–396
  • Kumari K, Muthamilarasan M, Misra G, Gupta S, Subramanian A, Parida SK, Chattopadhyay D, Prasad M (2013) Development of eSSR-markers in Setaria italica and their applicability in studying genetic diversity, cross-transferability and comparative mapping in millet and non-millet species. PLoS One 8(6):e67742. doi:10.1371/journal.pone.0067742
  • Lata C, Jha S, Dixit V, Sreenivasulu N, Prasad M (2011) Differential antioxidative responses to dehydration-induced oxidative stress in core set of foxtail millet cultivars [Setaria italica (L.)]. Protoplasma 248:817–828
  • Lata C, Gupta S, Prasad M (2013) Foxtail millet: a model crop for genetic and genomic studies in bioenergy grasses. Crit Rev Biotech 33(3):328–343. doi:10.3109/07388551.2012.716809
  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461
  • Lindquist JL, Mortensen DA, Johnson BE (1998) Mechanisms of corn tolerance and velvetleaf suppressive ability. Agron J 90: 787–792
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Moles AT, Leishman MR (2008) The seedling as part of a plant’s life history strategy. In: Leck MA, Parker VT, Simpson RL (eds) Seedling ecology and evolution. Cambridge University Press, Cambridge, pp 217–238
  • Morita S, Kaminaka H, Masumura T, Tanaka K (1999) Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress: The involvement of hydrogen peroxide in oxidative stress signaling. Plant Cell Physiol 40:417–422
  • Murphy TM, Huerta AJ (1990) Hydrogen peroxide formation in cultured rose cells in response to UV-C radiation. Physiol Plant 78:247–253
  • Muthamilarasan M BVS, Prasad M (2014) Advances in Setaria genomics for genetic improvement of cereals and bioenergy grasses. Theo Appl Genet. doi:10.1007/s00122-014-2399-3
  • Muthamilarasan MBVS, Misra G, Prasad M (2013) FmMDb: a versatile database of foxtail millet markers for millets and bioenergy grasses research. PLoS One 8(8):e71418. Doi:10.1371/ journal.pone.0071418
  • Muthamilarasan MBVS, Suresh BV, Pandey G, Kumari K, Parida SK, Prasad M (2014) Development of 5123 intron-length polymorphic markers for large-scale genotyping applications in foxtail millet. DNA Res 21:41–52
  • Nicholas JC, Harper JE, Hageman RH (1976) Nitrate reductase activity in soybean (Glycine max (L.) Merr.). I. effects of light and temperature. Plant Physiol 58:731–735
  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Okamura M (1980) An improved method for determination of Lascorbic acid and L-dehydroascorbic acid in blood plasma. Clin Chim Acta 103:259–268
  • Pandey G, Misra G, Kumari K, Gupta S, Parida SK, Chattopadhyay D, Prasad M (2013) Genome-wide development and use of microsatellite markers for large-scale genotyping applications in foxtail millet [Setaria italica (L.)]. DNA Res 20:197–207
  • Paranhos A, Fernandez-Tarrago J, Corchete P (1999) Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: effect of calcium restriction. Phytol 141:51–60
  • Prabhu R, Ganesan MN (2013) Genetic Diversity Studies in Ragi (Eleusine coracana (L.) Gaertn.) With SSR and ISSR Markers. Molecular. Plant Breeding 4(17):141–145
  • Prasanna PL, Sambamurthy JS, Kumar PVRV, Rao VS (2013) Single case restriction selection indices in exotic genotypes of Italian millet [Setaria italica (L.) Beauv]. J Nat Sci 1:25–31
  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet B and Ozone induced biochemical changes in antioxidant enzymes of Arabidopsis thaliyana. Plant Physiol 110:125–136
  • Rodriguez Milla MA, Maurer A, Rodriguez Huete A, Gustafson JP (2003) Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J 36:602–615
  • Rohlf FJ (2000) NTSYS-PC, numerical taxonomy system for the PC Exeter Software, version 2.1. Applied Biostatistics Inc Setauket, USA
  • Roldan-Ruiz IJ, Dendauw EVB, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in the rye-grasses (Lolium spp.). Mol Breed 6:125–134
  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018
  • Sankhala A, Chopra S, Sankhala AK (2004) Effect of processing on tannin, phytate and in vitro iron in underutilized millets—Bajra. Indian J Nutr Dietetics 41:55–61
  • Sankula S, Van Gessel MJ, Mulford RR (2004) Corn leaf architecture as a tool for weed management in two production systems. Weed Sci 52:1026–1033
  • Scandalios JG, Guan L, Bolidoros AN (1997) Catalase: gene structure, properties, regulation and expression. In: Scandalios JG (ed) Oxidative stress and molecular biology of antioxidant defenses. Cold Spring Harbor Laboratory Press, New York, pp 343–403
  • Shalata A, Tal M (1998) The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennelli. Physiol Plant 104:169–174
  • Smirnoff N (2005) Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In: Smirnoff N (ed) Antioxidants and reactive oxygen species in plants. Blackwell Publishing Ltd, Oxford, pp 53–86
  • Smith IK, Vierhelle TL, Thorne CA (1988) Assay of glutathione reductase in crude tissue homogenates using 5,50-dithiobis (2-nitrobenzoic acid). Anals Biochem 175:408–413
  • Stewart RRC, Bewley JD (1980) Lipid Peroxidation associated with accelerated aging of soybean axes. Plant Physiol 65:245–248
  • Strain HH, Bengamin TC, Walter AS (1971) Analytical Procedure for isolation, identification, estimation, investigation of chlorophyll. In: Pietro AS (ed) Methods in enzymology. Academic Press, New York, pp 423–452
  • Van Huystee RE (1987) Some molecular aspects of plant peroxidase biosynthetic studies. Annu Rev Plant Physiol 38:205–219
  • Vandenabeele S, Vanderauwera S, Vuylsteke M, Rombauts S, Langebartels C, Seidlitz HK, Zabeau M, Van Montagu M, Inzé D, Van Breusegem F (2004) Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J 39:45–58
  • Wang AG, Luo GH (1990) Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiol Commun 6:55–57
  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M (1997) Catalase in sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO 16:4806–4816
  • Williams LE, Miller AJ (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Biol 52:659–688
  • Yadav CB, Muthamilarasan M, Pandey G, Khan Y, Prasad M (2014) Development of novel microRNA-based genetic markers in foxtail millet for genotyping applications in related grass species. Mol Breed. doi:10.1007/s11032-014-0137-9
  • Yeh FC, Boyle T, Rongcai Y, Ye Z, Xian JM (1999) Popgene, a Microsoft Windows based freeware for population genetic analysis, Ver 1.32. Edmonton: University of Alberta and Center for International Forestry Research
  • Zelitch I, Havir EA, Mc Gonigle B, Mc Hale NA, Nelson T (1991) Leaf catalase mRNA and catalase-protein levels in a highcatalase tobacco mutant with O2 resistant photosynthesis. Plant Physiol 97:1592–1595
  • Zhang J, Kirkham MB (1996) Lipid peroxidation in sorghum and sunflower seedlings as affected by ascorbic acid and propyl gallate. J Plant Physiol 149:489–493
  • Zhang S, Tang C, Zhao Q, Li J, Yang L, Qie L, Fan X, Li L, Zhang N, Zhao M, Liu X, Chai Y, Zhang X, Wang H, Li Y, Li W, Zhi H, Jia G, Diao X (2014) Development of highly polymorphic simple sequence repeat markers using genome-wide microsatellite variant analysis in Foxtail millet [Setaria italica (L.) P. Beauv.]. BMC Genom 15:78. doi:10.1186/1471-2164-15-78

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-20f5252e-078b-40ad-a82f-3934f7c052a0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.