PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 4 |

Tytuł artykułu

Cu,Zn-superoxide dismutase is differently regulated by cadmium and lead in roots of soybean seedlings

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The cadmium (Cd²⁺) and lead (Pb²⁺)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd²⁺ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb²⁺-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb²⁺). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd²⁺/Pb²⁺ stresses, however in Pb²⁺-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

4

Opis fizyczny

p.741-747,fig.,ref.

Twórcy

autor
  • Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
autor
  • Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland

Bibliografia

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53(372):1331–1341. doi:10.1093/jexbot/53.372.1331
  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. doi:10.1146/annurev.arplant.55.031903.141701
  • Arahira M, Nong VH, Kadokura K, Kimura K, Udaka K, Fukazawa C (1998) Molecular cloning and expression patterns of Cu/Znsuperoxide dismutases in developing soybean seeds. Biosci Biotechnol Biochem 62(5):1018–1021. doi:10.1271/bbb.62.1018
  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gel. Anal Biochem 44:276–287. doi:10.1016/0003-2697(71):90370-90378
  • Bowler C, Van Montagu M, Inzé D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116. doi:10.1146/annurev.pp.43.060192.000503
  • Bowler C, Van Camp W, Van Montagu M, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13(3):199–218. doi: 10.1080/713608062
  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3
  • Cohu CM, Pilon M (2007) Regulation of superoxide dismutase expression by copper availability. Physiol Plant 129:747–755. doi:10.1111/j.1399-3054.2007.00879.x
  • Davis BJ (1964) Disc electrophoresis-II: method an application to human serum proteins. Ann N Y Acad Sci 121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x
  • Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520. doi:10.1016/j.pbi. 2004.07.011
  • Ferreira RR, Fornazier RF, Vitoria AP, Lea PJ, Azevedo RA (2002) Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr 25(2):327–342. doi:10.1081/PLN-100108839
  • Gapper C, Dolan L (2006) Control of plant development by reactive oxygen species. Plant Physiol 141:341–345. doi:10.1104/pp.106. 079079
  • Gwóźdź EA, Przymusiński R, Rucińska R, Deckert J (1997) Plant cell responses to heavy metals: molecular and physiological aspects. Acta Physiol Plant 19(4):459–465. doi:10.1007/s11738-997-0042-5
  • Gwóźdź EA, Kopyra M, Stachoń-Wilk M, Deckert J (2006) Nitric oxide enhances the antioxidant capacity of plant cells exposed to cadmium. XV Congress of Federation of European Societies of Plant Biology, Lyon
  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322. doi:10.1104/pp.106.077073
  • Halliwell B, Gutterdge JMC (1989) Free radicals in biology and medicine. Clarendon Press, Oxford
  • Hartwig A (2001) Zink finger proteins as potential targets for toxic metal ions: differential effects on structure and function. Antioxid Redox Signal 3:625–634. doi:10.1089/15230860152542970
  • Hernández-Nistal J, Dopico B, Labrador E (2002) Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci 163:507–514. doi:10.1016/ S0168-9452(02)00153-X
  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida A (2006) Monitoring expression profiles of antioxidant genes to salinity, iron, oxidative, light and hyperosmotic stresses in the highly salt tolerant grey mangrove, Avicennia marina (Forsk.) Vierh. by mRNA analysis. Plant Cell Rep 25:865–876. doi:10.1007/s00299-006-0127-4
  • Karpinski S, Wingsle G, Karpinska B, Hallgren J-E (1992a) Differential expression of Cu, Zn-superoxide dismutases in Pinus sylvestris needles exposed to SO2 and NO2. Physiol Plant 85:689–696. doi:10.1111/j.1399-3054.1992.tb04772.x
  • Karpinski S, Wingsle G, Olsson O, Hällgren J-E (1992b) Characterization of cDNAs encoding CuZn-superoxide dismutases in scots pine. Plant Mol Biol 18:545–555. doi:10.1007/BF00040670
  • Kernodle SP, Scandalios JG (1996) A comparison of the structure and function of the highly homologous maize antioxidant Cu/Zn superoxide dismutase genes Sod4 and Sod 4A. Genetics 144:317–328
  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res 570:149–161. doi:10.1016/j. mrfmmm.2004.10.004
  • Kurepa J, Van Montagu M, Inzé D (1997a) Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess. J Exp Bot 48(317):2007–2014. doi:10.1093/jexbot/ 48.317.2007
  • Kurepa J, Hérouart D, Van Montagu M, Inzé D (1997b) Differential expression of Cu, Zn and Fe-superoxide dismutase genes of tobacco during development, oxidative stress, and hormonal treatments. Plant Cell Physiol 38(4):463–470
  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802. doi:10.1016/j.plantsci.2004.10.012
  • Madamanchi NR, Donahue JL, Cramer CL, Alscher RG, Pedersen K (1994) Differential response of Cu, Zn superoxide dismutases in two pea cultivars during a short-term exposure to sulfur dioxide. Plant Mol Biol 26:95–103. doi:10.1007/BF00039523
  • Mylona PV, Polidoros AN, Scandalios JG (2007) Antioxidant gene responses to ROS-generating xenobiotics in developing and germinating scutella of maize. J Exp Bot 58:1301–1312. doi: 10.1093/jxb/erl292
  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E (2003) Early step in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301. doi:10.1093/ jxb/54.381.291
  • Przymusiński R (2003) Proteins of lupin induced by lead ions and other stress factors. Wydawnictwo Naukowe UAM, Poznań (in Polish, Abstract and Summary in English)
  • Przymusiński R, Gwóźdź EA (1999) Heavy metal-induced polypeptides in lupine roots are similar to pathogenesis-related proteins. J Plant Physiol 154(5–6):703–708
  • Przymusiński R, Rucińska R, Gwóźdź EA (1995) The stressstimulated 16 kDa polypeptide from lupine roots has properties of cytosolic Cu:Zn-superoxide dismutase. Environ Exp Bot 35:485–495. doi:10.1016/0098-8472(95)00029-1
  • Romero-Puertas MC, Palma JM, Gomez M, Del Rio LA, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686. doi: 10.1046/j.1365-3040.2002.00850.x
  • Rucińska R, Waplak S, Gwóźdź EA (1999) Free radical formation and activity of antioxidant enzymes in lupine roots exposed to lead. Plant Physiol Biochem 37:187–194. doi:10.1016/S0981-9428(99)80033-3
  • Rucińska R, Sobkowiak R, Gwóźdź EA (2004) Genotoxicity of lead in lupine root cells as evaluated by the comet assay. Cell Mol Biol Lett 9:519–528
  • Sakaguchi S, Fukuda T, Takano H, Ono K, Takio S (2004) Photosynthetic electron transport differentially regulates the expression of superoxide dismutase genes in liverwort, Marchantia paleacea var. diptera. Plant Cell Physiol 45(3):318–324. doi:10.1093/pcp/pch039
  • Sakamoto A, Ohsuga H, Tanaka K (1992a) Nucleotide sequences of two cDNA clones encoding different Cu/Zn-superoxide dismutases expressed in developing rice seeds (Oryza sativa L.). Plant Mol Biol 19:323–327. doi:10.1007/BF00027355
  • Sakamoto A, Okumura T, Ohsuga H, Tanaka K (1992b) Genomic structure of the gene for copper/zinc-superoxide dismutase in rice. FEBS Lett 301(2):185–189. doi:10.1016/0014-5793(92) 81244-G
  • Sakamoto A, Nosaka Y, Tanaka K (1993a) Cloning and sequencing analysis of a complementary DNA for manganese-superoxide dismutase from rice (Oryza sativa L.). Plant Physiol 103:1477–1478. doi:10.1104/pp.103.4.1477
  • Sakamoto A, Ohsuga H, Wakaura M, Mitsukawa N, Hibina T, Masumura T, Sasaki Y, Tanaka K (1993b) cDNA cloning and expression of the plastidic copper/zinc-superoxide dismutase from spinach (Spinacia oleracea L.) leaves. Plant Cell Physiol 34(6):965–968
  • Sandalio LM, Dalurzo HC, Gomez M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126
  • Sanita di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plant. Environ Exp Bot 41:105–130. doi:10.1016/S0098-8472(98)00058-6
  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365. doi:10.1093/jexbot/53. 372.1351
  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in scots pine roots. Plant Physiol 127:887–898. doi:10.1104/pp.010318
  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48(4):523–544. doi:10.1023/A:1016719901147
  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52. doi:10.1590/S1677-04202005000100004
  • Sobkowiak R, Deckert J (2003) Cadmium-induced changes in growth and cell cycle gene expression in suspension-culture cells of soybean. Plant Physiol Biochem 41:767–772. doi:10.1016/S0981-9428(03)00101-3
  • Sobkowiak R, Deckert J (2004) The effect of cadmium on cell cycle control in suspension culture cells of soybean. Acta Physiol Plant 26:335–344. doi:10.1007/s11738-004-0023-x
  • Sobkowiak R, Deckert J (2006) Proteins induced by cadmium in soybean cells. J Plant Physiol 163:1203–1206. doi:10.1016/j.jplph.2005.08.017
  • Sobkowiak R, Rymer K, Rucińska R, Deckert J (2004) Cadmiuminduced changes in antioxidant enzymes in suspension culture of soybean cells. Acta Biochim Pol 51:219–222
  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi:10.1105/tpc.104.022830
  • Sunkar R, Kapoor A, Zhu J-K (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi:10.1105/tpc.106.041673
  • Torres MA, Jones JDG, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378. doi:10.1104/pp.106.079467
  • Tsang EWT, Bowler C, Hérouart D, Van Camp W, Villarroel R, Genetello C, Van Montagu M, Inzé D (1991) Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell 3:783–792
  • Tsukamoto S, Morita S, Hirano E, Yokoi H, Masumura T, Tanaka K (2005) A novel cis-element that is responsive to oxidative stress regulates three antioxidant defense genes in rice. Plant Physiol 137:317–327. doi:10.1104/pp.104.045658
  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390. doi:10.1104/pp.106. 078295
  • Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes response to cadmium in radish tissues. Phytochemistry 57:701–710. doi:10.1016/S0031-9422(01)00130-3
  • Wilkins DA (1957) A technique for the measurement of lead tolerance in plants. Nature 180:37–38. doi:10.1038/180037b0
  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by microRNA in Arabidopsis. J Biol Chem 282(22):16369–16378. doi:10.1074/ jbc.M700138200

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-209492b7-434e-4d45-894a-05d24b262912
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.