PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 34 | 5 |

Tytuł artykułu

Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Responses of Atriplex portulacoides upon 40-day-long exposure to salinity (0–1,000 mM NaCl) were investigated. Mother plants originated from a sabkha located in a semi-arid region of Tunisia. The plant relative growth rate and leaf expansion increased significantly at 200 mM NaCl but decreased at higher salinities. Interestingly, the plants survived salinity as high as 1,000 mM NaCl without displaying salt-induced toxicity symptoms. Despite significant increase in leaf Na⁺ and Cl⁻ concentrations upon salt treatment, no significant effect on leaf relative water content was registered. Chlorophyll contents and the gas exchange parameters showed a significant stimulation at the optimal salinity (200 mM NaCl) followed by a decline at higher salinities. Extreme salinity hardly impacted the maximal efficiency of photosystem II photochemistry (Fv/Fm), but a marked decrease in the relative quantum yield of photosystem II (ΦPSII) was observed, along with a significant increase in non-photochemical quenching (NPQ). Leaf malondialdehyde and carotenoid contents were generally unaffected following salt exposure, whereas those of anthocyanins, polyphenols, and proline increased significantly, being maximal at 1,000 mM NaCl. Leaf superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), and glutathione reductase (EC 1.6.4.2) activities were significantly stimulated by salinity, whereas catalase (EC 1.11.1.6) activity was maximal in the 0–400 mM NaCl range. As a whole, protecting the photosynthetic machinery from salt-induced photodamage together with the sustained antioxidant activity may account for the performance of A. portulacoides under high salinity.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

34

Numer

5

Opis fizyczny

p.1679-1678,fig.,ref.

Twórcy

autor
  • Laboratoire des Plantes Extremophiles, Centre de Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
autor
  • Laboratoire des Plantes Extremophiles, Centre de Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
  • Physiologie Cellulaire et Moleculaire des Plantes, UR5, EAC 7180 CNRS, Universite Pierre et Marie Curie (UPMC), Case 156, 4 place Jussieu, 75252 Paris Cedox 05, France
autor
  • Laboratoire des Plantes Extremophiles, Centre de Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
autor
  • Laboratoire des Plantes Extremophiles, Centre de Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia
autor
  • Laboratoire des Plantes Extremophiles, Centre de Borj-Cedria (CBBC), BP 901, 2050 Hammam-Lif, Tunisia

Bibliografia

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnol Adv 27:84–93
  • Bailly C, Benamar A, Corbineau F, Côme D (1996) Changes in malondialdehyde content and in superoxide dismutase, catalase and glutathione reductase activities in sunflower seeds as related to deterioration during accelerated ageing. Physiol Plant 97:104–110
  • Barhoumi Z, Djebali W, Chaïbi W, Abdelly C, Smaoui A (2007) Salt impact on photosynthesis and leaf ultrastructure of Aeluropus littoralis. J Plant Res 120:529–537
  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207
  • Beadle CL (1993) Growth analysis. In: Hall DO, Scurloc JMO, Bolhar-Nordentrampf HR, Leegod RC, Long SP (eds) Photosynthesis and production in a changing environment. Chapman Hall, London, pp 36–45
  • Ben Amor N, Ben Hamed K, Debez A, Grignon C, Abdelly C (2005) Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Sci 168:889–899
  • Çiçek N, Çakırlar H (2008) Effects of salt stress on some physiological and photosynthetic parameters at three different temperatures in six soya bean (Glycine max L. Merr.) cultivars. J Agron Crop Sci 194:34–46
  • Debez A, Chaibi W, Bouzid S (2003) Physiological responses and structural modifications in Atriplex halinus L. plants exposed to salinity. In: Lieth H, Mochtchenko M (eds) Tasks for vegetation science. Cash crop halophytes. Recent studies, vol 38. Kluwer Academic Publishers, Dordrecht, pp 19–30
  • Debez A, Koyro HW, Grignon C, Abdelly C, Huchzermeyer B (2008) Relationship between the photosynthetic activity and the performance of Cakile maritima after long-term salt treatment. Physiol Plant 133:373–385
  • Debez A, Saadaoui D, Slama I, Huchzermeyer B, Abdelly C (2010) Responses of Batis maritima plants challenged with up to twofold seawater NaCl salinity. J Plant Nutr Soil Sci 173:291–299
  • Debez A, Huchzermeyer B, Abdelly C, Koyro HW (2011) Current challenges and future opportunities for a sustainable utilization of halophytes. In: Öztürk M et al (eds) Sabkha ecosystems, Tasks for vegetation science, vol 46. Springer, Netherlands, pp 59–77
  • Delfine S, Alvino A, Zacchini M, Loreto F (1998) Consequences of salt stress on conductance to CO₂ diffusion, Rubisco characteristics and anatomy of spinach leaves. Aust J Plant Physiol 25:395–402
  • Dewanto VX, Wu K, Adom K, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agri Food Chem 50:3010–3014
  • Dorda OJ, Martinez MC, Correal E, Simon B, Cenis JL (2005) Genetic structure of Atriplex halimus populations in the mediterranean basin. Ann Bot 95:827–834
  • Esterbauer H, Grill D (1978) Seasonal variation of glutathione and glutathione reductase in needles of Picea abies. Plant Physiol 61:119–121
  • Fang ZQ, Yuan LY, Hong PC, Ming LC, Shan WB (2005) NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Sci 168:423–430
  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875
  • Genty B, Briantais JM, Baker N (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92
  • Gómez JM, Jiménez A, Olmos E, Sevilla F (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isoenzymes of pea (Pisum sativum cv. Puget) chloroplasts. J Exp Bot 55:119–130
  • Gould KS, Markham KR, Smith RH, Goris JJ (2000) Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J Exp Bot 51:1107–1115
  • Hewitt EJ (1960) Sand and water culture methods used in the study of plant nutrition. Commonwealth Bureau of Horticulture. Tech Rep 22:431–446
  • Hughes NM, Morley CB, Smith WK (2007) Coordination of anthocyanin decline and photosynthetic maturation in juvenile leaves of three deciduous tree species. New Phytol 175:675–685
  • Jaleel AC, Ksouri R, Gopi R, Manivannan P, Jallali I, Chang-Xing Z (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31:427–436
  • Li G, Wan S, Zhou J, Yang Z, Qin P (2010) Leaf chlorophyll fluorescence, hyper spectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels. Ind Crop Prod 31:13–19
  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembrane. In: Douce R, Packer L (eds) Methods in enzymology, vol 148. Academic Press, San Diego, pp 350–382
  • Lokhande VH, Nikam TD, Patade VY, Ahire ML, Suprasanna P (2010) Effects of optimal and supra-optimal salinity stress on antioxidative defence, osmolytes and in vitro growth responses in Sesuvium portulacastrum L. Plant Cell Tissue Organ Cult 104:416–449
  • Lu C, Jiang G, Wang B, Kuang T (2003) Photosystem II photochemistry and photosynthetic pigment composition in salt-adapted halophyte Artimisia anethifolia grown under outdoor conditions. J Plant Physiol 160:403–408
  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668
  • Megdiche W, Hessini K, Gharbi F, Jaleel CA, Ksouri R, Abdelly C (2008) Photosynthesis and photosystem 2 efficiency of two saltadapted halophytic seashore Cakile maritima ecotypes. Photosynthetica 46:410–419
  • Munns R, Tester M (2008) Mechanisms of Salinity Tolerance. Annu Rev Plant Biol 59:651–681
  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI (2007) Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta 1767:414–421
  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279
  • Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542
  • Qiu N, Lu Q, Lu C (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol 159:479–486
  • Reddy A, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plant. J Plant Physiol 161:1189–1202
  • Redondo-Gómez S, Wharmby C, Castillo JM, Mateos-Naranjo E, Luque CJ, de Cires A, Luque T, Davy AJ, Figueroa ME (2006) Growth and photosynthetic responses to salinity in an extreme halophyte, Sarcocornia fruticosa. Physiol Plant 128:116–124
  • Redondo-Gómez S, Mateos-Naranjo E, Davy AJ, Fernandez-Munoz F, Castellanos EM, Luque T, Figueroa ME (2007) Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. Ann Bot 100:555–563
  • Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME, Davy AJ (2010) Salt stimulation of growth and photosynthesis in an extreme halophyte, Arthrocnemum macrostachyum. Plant Biol 12:79–87
  • Sekmen AH, Turkan I, Tanyolac ZO, Ozfidan C, Dinc A (2012) Different antioxidant defense responses to salt stress during germination and vegetative stages of endemic halophyte Gypsophila oblanceolata bark. Environ Exp Bot 77:63–76
  • Slesak I, Miszalski Z (2003) Superoxide dismutase-like protein from roots of the intermediate C₃-CAM plant Mesembryanthemum crystallinum L. in vitro culture. Plant Sci 164:497–505
  • Solomon A, Beer S, Waisel Y, Paleg LG (1994) Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence of proline-related compatible solutes. Physiol Plant 90:198–204
  • Sousa AI, Caçador LillebAI, Pardal A (2008) Heavy metal accumulation in Halimione portulacoides: intra- and extra-cellular metal binding sites. Chemosphere 70:850–857
  • Steyn WJ, Wand SJE, Holcroft DM, Jacobs G (2002) Anthocyanins in vegetative tissues: a proposed unified function in photoprotection. New Phytol 155:349–361
  • Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97
  • Trabelsi N, Megdiche W, Ksouri R, Falleh H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C (2010) Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves. LWT-Food Sci Technol 43:632–639
  • Tuffers A, Naidoo G, von Willert DG (2001) Low salinities adversely affect photosynthetic performance of the mangrove, Avicennia marina. Wetl Ecol Manage 9:225–232
  • Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10:615–620
  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-204a74ee-496f-4c24-889d-da3b2eef378e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.