PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 72 | 2 |

Tytuł artykułu

Chitosan biopolymer improves the fruit quality of litchi (Litchi chinensis Sonn.)

Treść / Zawartość

Warianty tytułu

PL
Biopolimer chitozan poprawia jakość owoców liczi (Litchi chinensis Sonn.)

Języki publikacji

EN

Abstrakty

EN
Chitosan (CHT) is a natural compound that has been used to control postharvest pathogenic diseases due to its capability of eliciting natural defense responses in plants. The aim of this study was to investigate the effect of foliar CHT application on yield and quality of the litchi fruit. Chitosan was applied by spraying on to fruit and foliage just after fruit set four times at 7-day intervals with four varying doses viz. 100, 250, 500, and 1,000 µg L−1 and a control (0 µg L−1). Although the application of CHT had no significant effect on the size of the fruits (length and width), the total contents of phenolics, flavonoids, and ascorbic acid and the antioxidant activity of litchi fruit arils were significantly increased in CHT-treated fruit compared with the untreated control. The highest phenolic, flavonoid, and ascorbic acid contents were 334 µg gallic acid g−1, 881 μg quercetin g−1, and 178 µg g−1, respectively, in fruits treated with 500 µg L−1 CHT. However, the highest antioxidant activity (622 μg butylated hydroxytoluene g−1) was recorded in 250 µg L−1 CHT-treated fruits. Our findings revealed that the application of low doses of CHT in a litchi orchard might improve fruit quality by increasing the content of antioxidants and antioxidant activities.
PL
Chitozan (CHT) jest naturalnym związkiem wykorzystywanym do zwalczania chorób roślin, ponieważ wykazuje potencjał do wywoływania naturalnej odpowiedzi obronnej w roślinach. Celem niniejszych badań było określenie wpływu dolistnego aplikowania CHT na plonowanie i jakość owoców liczi. Chitozan w stężeniu: 0 (kontrola), 100, 250, 500 lub 1000 μg L−1 rozpylano na owoce i liście bezpośrednio po pojawieniu się owoców czterokrotnie w odstępach 7-dnio-wych. Mimo, że aplikacja CHT nie miała istotnego wpływu na wielkość owoców (długość i szerokość), całkowita zawartość związków fenolowych, flawonoidów i kwasu askorbiowego, jak również aktywność antyoksydacyjna owoców liczi wyraźnie wzrosła po zastosowaniu CHT w porównaniu do owoców nie poddanych działaniu tego związku. Najwyższe stężenia związków fenolowych, flawonoidów i kwasu askorbinowego, wynoszące odpowiednio: ekwiwalent 334 μg kwasu galusowego g−1 , ekwiwalent 881 μg kwercytyny g−1 i 178 μg g−1, stwierdzono w owocach traktowanych 500 μg L−1 CHT. Jednak najwyższą aktywność antyrodnikową (622 μg butylohy-droksytoluenu g−1) stwierdzono w owocach traktowanych 250 μg L−1 CHT. Uzyskane wyniki wskazują, że zastosowanie niskich stężeń CHT w sadach liczi może poprawić jakość owoców poprzez zwiększenie w nich zawartości antyoksydantów oraz aktywności antyrodnikowej.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

72

Numer

2

Opis fizyczny

Article: 1773 [9 p.], fig.,ref.

Twórcy

  • Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, Dhaka, Bangladesh
autor
  • Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
autor
  • Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
  • Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh
autor
  • Extension Service, West Virginia University, Morgantown, WV 26506, USA
autor
  • Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh

Bibliografia

  • Menzel C. The physiology of growth and cropping in litchi. Acta Hortic. 2001;558:175–184. https://doi.org/10.17660/ActaHortic.2001.558.24
  • Luximon-Ramma A, Bahorun T, Crozier A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J Sci Food Agric. 2003;83(5):496–502. https://doi.org/10.1002/jsfa.1365
  • Su D, Zhang R, Zhang C, Huang F, Xiao J, Deng Y, et al. Phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts offer hepatoprotection against restraint stress-induced liver injury in mice by modulating mitochondrial dysfunction. Food Funct. 2016;7(1):508–515. https://doi.org/10.1039/C5FO00975H
  • Gao W, Lin P, Zeng X, Brennan MA. Preparation, characterisation and antioxidant activities of litchi (Litchi chinensis Sonn.) polysaccharides extracted by ultra-high pressure. Int J Food Sci Technol. 2017;52(8):1739–1750. https://doi.org/10.1111/ijfs.13447
  • Morton LW, Caccetta RAA, Puddey IB, Croft KD. Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clin Exp Pharmacol Physiol. 2000;27(3):152–159. https://doi.org/10.1046/j.1440-1681.2000.03214.x
  • Kurita K. Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol. 2006;8(3):203–226. https://doi.org/10.1007/s10126-005-0097-5
  • Jesmin S, Debnath T, Islam JMM, Rahaman MS, Kamal AHM, Rahaman MS, et al. Edible transparent coating of irradiated oligo-chitosan to preserve aesthetic view and taste of litchi fruit. Journal of Food Microbiology. 2018;2(1):3–8.
  • Jitareerat P, Paumchai S, Kanlayanarat S, Sangchote S. Effect of chitosan on ripening, enzymatic activity, and disease development in mango (Mangifera indica) fruit. N Z J Crop Hortic Sci. 2007;35(2):211–218. https://doi.org/10.1080/01140670709510187
  • Wang B, Zhang S, Wang X, Yang S, Jiang Q, Xu Y, et al. Transcriptome analysis of the effects of chitosan on the hyperlipidemia and oxidative stress in high-fat diet fed mice. Int J Biol Macromol. 2017;102:104–110. https://doi.org/10.1016/j.ijbiomac.2017.03.187
  • Rahman MH, Shovan LR, Hjeljord LG, Aam BB, Eijsink VGH, Sørlie M, et al. Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. PLoS One. 2014;9(4):e93192. https://doi.org/10.1371/journal.pone.0093192
  • Park Y, Kim MH, Park SC, Cheong H, Jang MK, Nah JW, et al. Investigation of the antifungal activity and mechanism of action of LMWS-chitosan. J Microbiol Biotechnol. 2008;18(10):1729–1734.
  • Ghaouth EL, Arul A, Ponnampalam JR, Boulet M. Chitosan coating effect on storability and quality of fresh strawberries. J Food Sci. 1991;56(6):1618–1620. https://doi.org/10.1111/j.1365-2621.1991.tb08655.x
  • Lin B, Du Y, Liang X, Wang X, Wang X, Yang J. Effect of chitosan coating on respiratory behavior and quality of stored litchi under ambient temperature. J Food Eng. 2011;102(1):94–99. https://doi.org/10.1016/j.jfoodeng.2010.08.009
  • Zhang D, Quantick PC. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol Technol. 1997;12(2):195–202. https://doi.org/10.1016/S0925-5214(97)00057-4
  • Jiang Y, Li J, Jiang W. Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. LWT – Food Science and Technology. 2005;38(7):757–761. https://doi.org/10.1016/j.lwt.2004.09.004
  • Sun D, Liang G, Xie J, Lei X, Mo Y. Improved preservation effects of litchi fruit by combining chitosan coating with ascorbic acid treatment during postharvest storage. Afr J Biotechnol. 2010;9(22):3272–3279.
  • Mukta JA, Rahman M, Sabir AA, Gupta DR, Surovy MZ, Rahman M, et al. Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatal Agric Biotechnol. 2017;11:9–18. https://doi.org/10.1016/j.bcab.2017.05.005
  • Rahman M, Mukta JA, Sabir AA, Gupta DR, Mohi-ud-din M, Hasanuzzaman M, et al. Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One. 2018;13(9):e0203769. https://doi.org/10.1371/journal.pone.0203769
  • Abdel-Mawgoud AMR, Tantawy AS, El-Nemr MA, Sassine YN. Growth and yield responses of strawberry plants to chitosan application. Eur J Sci Res. 2010;39(1):161–168.
  • Salachna P, Wilas J, Zawadzinska A. The effect of chitosan coating of bulbs on the growth and flowering of Ornithogalum saundersiae. Acta Hortic. 2015;1104:115–118. https://doi.org/10.17660/ActaHortic.2015.1104.18
  • Emami Bistgani Z, Siadat SA, Bakhshandeh A, Ghasemi Pirbalouti A, Hashemi M. Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta Physiol Plant. 2017;39(10):231. https://doi.org/10.1007/s11738-017-2526-2
  • Landi L, de Miccolis Angelini RM, Pollastro S, Feliziani E, Faretra F, Romanazzi G. Global transcriptome analysis and identification of differentially expressed genes in strawberry after preharvest application of benzothiadiazole and chitosan. Front Plant Sci. 2017;8:235. https://doi.org/10.3389/fpls.2017.00235
  • Xoca-Orozco LÁ, Cuellar-Torres EA, González-Morales S, Gutiérrez-Martínez P, López-García U, Herrera-Estrella L, et al. Transcriptomic analysis of avocado Hass (Persea americana Mill) in the interaction system fruit–chitosan–Colletotrichum. Front Plant Sci. 2017;8:956. https://doi.org/10.3389/fpls.2017.00956
  • Islam MS, Sharif AR, Sazzad HMS, Dawlat Khan AKM, Hasan M, Akter S, et al. Outbreak of sudden death with acute encephalitis syndrome among children associated with exposure to litchi orchards in Northern Bangladesh, 2012. Am J Trop Med Hyg. 2017;97(3):949–957. https://doi.org/10.4269/ajtmh.16-0856
  • Rokonuzaman M. Consumer and growers awareness towards artificial ripening of fruits using hazardous chemicals in some selected areas in Bangladesh. Indian Research Journal of Extension Education. 2017;17(2):57–62.
  • Benhamou N, Kloepper JW, Tuzun S. Induction of resistance against Fusarium wilt of tomato by combination of chitosan with an endophytic bacterial strain: ultrastructure and cytochemistry of the host response. Planta. 1998;204(2):153–168. https://doi.org/10.1007/s004250050242
  • Mensor LL, Menezes FS, Leitão GG, Reis AS, dos Santos TC, Coube CS, et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research. 1965;16(3):144–158. https://doi.org/10.1002/ptr.687
  • Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64(4):555–559. https://doi.org/10.1016/S0308-8146(98)00102-2
  • Schlesier K, Harwat M, Böhm V, Bitsch R. Assessment of antioxidant activity by using different in vitro methods. Free Radic Res. 2002;36(2):177–187. https://doi.org/10.1080/10715760290006411
  • Deepak M, Kasote S, Katyare S, Mahabaleshwar VH, Hanhong B. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int J Biol Sci. 2015;11(8):982–991. https://doi.org/10.7150/ijbs.12096
  • Sakif TI, Dobriansky A, Russell K, Islam T. Does chitosan extend the shelf life of fruits? Adv Biosci Biotechnol. 2016;7:337–342. https://doi.org/10.4236/abb.2016.78032
  • Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 2001;126(2):485–493. https://doi.org/10.1104/pp.126.2.485
  • Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol. 2002;5:218–223. https://doi.org/10.1016/S1369-5266(02)00256-X
  • Espin JC, Garcia-Conesa MT, Tomas-Barberan FA. Nutraceuticals: facts and fiction. Phytochemistry. 2007;68:2986–3008. https://doi.org/10.1016/j.phytochem.2007.09.014

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1eeda844-4b81-4178-a7b6-c36981409ada
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.