PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 35 | 04 |

Tytuł artykułu

Distribution of phenolic compounds and antioxidant activity between young and old leaves of Carthamus tinctorius L. and their induction by salt stress

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
In the present work, we investigated the effect of salt stress on the distribution of safflower (Carthamus tinctorius L.) antioxidant system in relation to leaf age. The study was carried out under growth chamber conditions using seedlings of three cultivars which were subjected to 0 and 50 mM NaCl for 3 weeks. Leaf growth, water content, lipid peroxidation, and phenolic compound (total polyphenols, total flavonoids, and proanthocyanidins) concentration were measured at two leaf stages (young and old leaves). Leaf growth was affected by salinity only in Kairouan cultivar that also showed a significant decrease in old leaf water content. By contrast, Gabes and Tazarka cultivars maintained their old leaf water content constant and showed a reduction in that of young leaves. This could be attributed to a higher aptitude of the latter two cultivars to use absorbed sodium and chloride for osmotic adjustment in old leaves, keeping potassium for specific functions. Salt-induced lipid peroxidation was observed only in old leaves, whereas the accumulation of the major phenolic compounds under saline conditions was higher in young leaves, except in Gabes cultivar where no significant difference was found between the two leaf stages. A significant variability was also found between the three cultivars. The better behavior of salt-challenged leaves of Gabes and Tazarka cultivars compared to that of Kairouan cultivar may be related to their higher water content and the accumulation of polyphenols, in particular flavonoids that were shown to be efficiently involved in the restriction of salt-induced oxidative damages.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

35

Numer

04

Opis fizyczny

p.1161-1169,fig.,ref.

Twórcy

autor
  • Unite´ de Physiologie et de Biochimie de la Tole´rance au Sel des Plantes, Faculte´ des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
autor
  • Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj Cedria (CBBC), P.O. Box 901, 2050 Hammam-Lif, Tunisia
autor
  • Unite´ de Physiologie et de Biochimie de la Tole´rance au Sel des Plantes, Faculte´ des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
autor
  • Laboratory of Extremophile Plants (LPE), Biotechnology Centre of Borj Cedria (CBBC), P.O. Box 901, 2050 Hammam-Lif, Tunisia
autor
  • Unite´ de Physiologie et de Biochimie de la Tole´rance au Sel des Plantes, Faculte´ des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia
  • Unite´ de Physiologie et de Biochimie de la Tole´rance au Sel des Plantes, Faculte´ des Sciences de Tunis, Campus Universitaire, 2092 Tunis El Manar, Tunisia

Bibliografia

  • Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. J Agric Food Chem 99:191–203. doi:10.1016/j.foodchem.2005.07.042
  • Bergendi’ L’, Beneš L, Duračkovǎ Z, Ferenčik M (1999) Chemistry, physiology and pathology of free radicals. Life Sci 65:1865– 1874. doi:10.1016/S0024-3205(99)00439-7
  • Bernstein N, Silk WK, Läuchli A (1995) Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition. Planta 196:699–705. doi:10.1007/BF01106763
  • Bourgou S, Ksouri R, Bellila A, Skandrani I, Falleh H, Marzouk B (2008) Phenolic composition and biological activities of Tunisian Nigella sativa L. shoots and roots. C R Biol 331:48–55. doi: 10.1016/j.crvi.2007.11.001
  • Cakmak I, Horst J (1991) Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol Plantarum 83:463–468. doi:10.1111/j.1399-3054.1991.tb00121.x
  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem 50:3010–3014. doi: 10.1021/jf011558
  • Di Martino C, Sebastiano D, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acid and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463. doi:10.1046/j.1469-8137.2003.00770.x
  • Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9. doi:10.1016/S0168-9452(98)00025-9
  • Edvera A (2005) Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agr Ecosyst Environ 106:119–133. doi:10.1016/j.agee.2004.10.022
  • Gyulai J (1996) Market outlook for safflower. In: Mundel HH, Braun J, Daniels C (eds) Proceedings of North American Safflower Conference. Great Falls, Montana, pp 17–18
  • Hajlaoui H, Denden M, El Ayed N (2009) Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crop Prod 30:144–151. doi:10.1016/j.indcrop.2009.03.003
  • Hajlaoui H, El Ayed N, Denden M, Garrec JP (2010) Differential effects of salt stress on osmotic adjustment and solutes allocation on the basis of root and leaf tissue senescence of two silage maize (Zea mays L.) varieties. Ind Crop Prod 31:122–130. doi: 10.1016/j.indcrop.2009.09.007
  • Hatano T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root their relative astringency and radical scavenging effect. Chem Pharm Bull 36:1090–1097. doi:10.1248/cpb.36.2090
  • Hoagland DR, Arnon DI (1940) The water culture method for growing plants without soil. Circular 347 College of Agriculture, University of California
  • Karray-Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaaˆl M (2010a) Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiol Plant 33:1435–1444. doi:10.1007/s/11738-010-0679-3
  • Karray-Bouraoui N, Ksouri R, Falleh H, Rabhi M, Abdul Jaleel C, Grignon C, Lachaǎl M (2010b) Effects of environment and development stage on phenolic content and antioxidant activities of Mentha pulegium L. J Food Biochem 34:79–89. doi:10.1111/j.1745-4514.2009.00303.x
  • Khan AN, Qureshi RH, Ahmed N (2004) Effect of external Sodium chloride Salinity on Ionic Composition of Leaves of Cotton Cultivars II. Cell Sap, Chloride and Osmotic Pressure. Int J Agr Biol 6:784–785. doi:1560-8530/2004/06-5-784-785
  • Ksouri R, Megdiche W, Falleh H, Trabelsi N, Boulaaba M, Smaoui A, Abdelly C (2008) Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C R Biol 331:865–873. doi:10.1016/j.crvi.2008.07.024
  • Lisiewska Z, Kmiecik W, Korus A (2006) Content of vitamin C, carotenoids, chlorophylls and polyphenols in green parts of dill (Anethum graveolens L.) depending on plant height. J Food Compos Anal 19:134–140. doi:10.1016/j.jfca.2005.04.009
  • Macheix JJ, Fleuriet A, Jay-Allemand C (2005) Les compose´s phe´noliques des ve´ge´taux: Un exemple de me´tabolites secondaires d’importance e´conomique. Presses Polytechniques et Universitaires Romandes, Lausanne
  • Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003) Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ Exp Bot 49:69–76. doi:10.1016/S0098-8472(02)00058-8
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410. doi:10.1016/S1360-1385(02)02312-9
  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250. doi:10.1046/j.0016-8025.2001.00808.x
  • Nivas D, Gaikwad DK, Chavan PD (2011) Physiological responses of two morinda species under saline conditions. Am J Plant Physiol 6:157–166. doi:10.3923/ajpp.2011.157.166
  • Prieto P, Pineda M, Aguilar M (1999) Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal Biochem 269:337–341. doi: 10.1006/abio.1999.4019
  • Santa-Maria GE, Epstein E (2001) Potassium/sodium selectivity in wheat and the amphiploid cross wheat 9 Lophopyrum elongatum. Plant Sci 160:532–534. doi:10.1016/S0168-9452(00)00419-2
  • Siddiqi EH, Ashraf M, Hussain M, Jamil A (2009) Assessment of inter-cultivar variation for salt tolerance in Safflower (Carthamus tinctorius L.) using gas exchange characteristics as selection criteria. Pakistan J Bot 41:2251–2259
  • Sun B, Richardo-da-Silvia JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem 46:4267–4274. doi:10.1021/jf980366j
  • Torrecillas A, Le´on A, Del Amor F, Martinez-Mompean MC (1984) Determinacio´n ra´pida de clorofila en discos foliares de limonero. Fruits 39:617–622
  • Vieira-Santos C, Campos A, Azevedo H, Caldeira G (2001) In situ and in vitro senescence induced by KCl stress: nutritional imbalance, lipid peroxidation and antioxidant metabolism. J Exp Bot 52:351–360. doi:10.1093/jexbot/52.355.351
  • Wahid A, Ghazanfar A (2005) Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J Plant Physiol 163:723–730. doi:10.1016/j.jplph.2005.07.007
  • Xiong L, Schmaker KS, Zhu JK (2002) Cell signaling during cold, drought, and salt stress. Plant Cell 165–83. doi: 10.1105/tpc. 000596
  • Yamane K, Mitsuya S, Kawasaki M, Taniguchi M, Miyake H (2009) Antioxidant Capacity and Damages Caused by Salinity Stress in Apical and Basal Regions of Rice Leaf. Plant Prod Sci 12:319–326

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1d60e8a1-627e-411b-a547-f01b593eb2ae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.