PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 62 | 4 |

Tytuł artykułu

Analysis of Proteus mirabilis distribution in multi-species biofilms on urinary catheters and determination of bacteria resistance to antimicrobial agents

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objectives of the investigation presented in this paper were: to examine the frequency of P. mirabilis isolation from catheters and assess the complexity of multi-species biofilms which these bacteria form, as well as to determine the vulnerability of planktonic and sessile P. mirabilis populations to popular antibiotics and compare it to the susceptibility of other Gram-negative bacteria isolated as associated flora from multi-species biofilm. 88 urological catheters, collected from long-term catheterized patients were examined. Uropathogens were recovered from the catheter surface by sonication, and identified on standard diagnostic media. The broth-microdilution method and the MBEC High-throughput Screening assay were used to determine the bacterial resistance to antibiotics. 279 microorganisms were isolated from 88 urinary catheter biofilms. The Enterobacteriaceae family were the most frequently detected bacteria (53.2% of isolates), whereas Proteus spp. isolation accounted for 17.9%, which placed these bacilli on the third position in the Enterobacteraceae family. Among all the tested drugs, amikacin and cephalosporins (ceftriaxone, cefotaxime and cefaclor) exhibited the highest activity against P. mirabilis planktonic cells, 86% and 73% of strains were susceptible to these antibiotics, respectively. 100% of P. mirabilis sessile forms were resistant to cefepime, ciprofloxacin, gatifloxacin, and norfloxacin. Amikacin and ceftriaxone affected only 5% of sessile forms. The planktonic cells of the other studied uropathogens were mostly vulnerable to the all tested drugs (exception P. aeruginosa strains), the most effective of which occurred to be amikacin and cefepime. Obtained MBECs values were 2-512-fold higher than MICs assessed for planktonic forms.

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.377-384,fig.,ref.

Twórcy

autor
  • Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
autor
  • Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland
autor
  • Department of Urology and Transplantology of Kidneys, M.Pirogow Hospital, Lodz, Poland
autor
  • Department of Immunobiology of Bacteria, Institute of Microbiology, Biotechnology and Immunology, University of Lodz, Lodz, Poland

Bibliografia

  • Anderl J., M. Franklin and P. Stewart. 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicilin and ciprofloxacin. Antimicrob. Agents. Chemother. 44: 1818-1824.
  • Bantar C, E. Vesco, C. Heft, F. Salamone, M. Krayeski, H. Gomez, M.A. Coassolo, A. Fiorillo, D. Franco, C. Arango and others. 2004. Replacement of broad spectrum cephalosporins by piperacillin-tazobactam: impact on sustained high rates of bacterial resistance. Antimicrob. Agents. Chemother. 48: 392-395.
  • Ceri H., M. Olson, C. Stremick, R. Read, D. Morck and A. Buret. 1999. The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol. 37: 1771-1776.
  • Chen L. and Y. Wen. 2011. The role of bacterial biofilm in persistent infections and control strategies. Int. J. Oral. Sci. 3: 66-73.
  • da Silva Nogueira K., A. Vale Daur, I. Taborda de Messias, A.C. Gales and L.M. Dalla Costa. 2011. Cefepime versus extended spectrum p-lactamase-producing Enterobacteriaceae. Braz. J. Infect. Dis. 15: 167-169.
  • Ghadiri H., H. Vaez, S. Khosravi and E. Sole; mani. 2012. The antibiotic resistance profiles of bacterial strains isolated from patients with hospital-acquired bloodstream and urinary tract infections. Crit. Care. Res. Prac. doi:10.l155/2012/890797.
  • Hoiby N, T. Bjarnsholt, M. Givskov, S. Molin and O. Ciofu. 2010. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Ag. 35: 322-332.
  • Jacobsen S.M., D.J. Stickler, H.L.T. Mobley and M.E. Shirtliff. 2008. Complicated catheter associated UTI due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21: 26-57.
  • Koseoglu H., G. Asian, N. Esen, B. Sen and H. Coban. 2006. Ultrastructural stages of biofilm development of Escherichia coli on urethal catheters and effects of antibiotics on biofilm formation. Urology 68: 942-946.
  • Kupilas A. 2006. Urinary tract infections. Przegl. Urol. (in Polish). 4: 50-54.
  • Kwiecińska-Piróg J., T. Bogiel and E. Gospodarek. 2010. The incidence of extended spectrum beta-lactamases in Proteus mirabilis strains isolated in 2007-2009. Przegl. Epidemiol. (in Polish). 4: 395-398.
  • Lazar V. and MC. Chifiriuc. 2010. Medical significance and new therapeutical strategies for biofilm associated infections. Roum. Arch. Microbiol. Immunol. 69 (3): 125-38.
  • MacLeod S. and D.J. Stickler. 2007. Species interactions in mixed-community crystalline biofilms on urinary catheters. J. Med. Microbiol. 56: 1549-1557.
  • Mazzulli T. 2012. Diagnosis and management of simple and complicated urinary tract infections (UTIs). Can. J. Urol. 19: 42-48.
  • Mierzynska E. and Z.I. Niemir. 2009. Antibiotics in nephrology (Part II) - principles of treatment of the most frequent diseases and their complications in hospitalized patients. Contemp. Pharm. 2: 102-109.
  • Muzzi-Bjornson L. and L. Macera. 2011. Preventing infection in elders with long-term indwelling urinary catheters. J. Am. Acad. Nurse. Prac. 23: 127-134.
  • Niveditha S., S. Pramodhini, S. Umadevi, K. Shailesh and S. Selvaraj. 2012. The isolation and biofilm formation of uropathogens in the patients with catheter associated urinary tract infections (UTIs). J. Clin. Diagn. Res. 6: 1478-1482.
  • Nucleo E., G. Fugazza, R. Migliavacca, M. Spalla, M. Comelli, L. Pagani and M. Debiaggi. 2010. Differences in biofilm formation and aggregative adherence between β-lactam susceptible and β-lactamases producing P. mirabilis clinical isolates. New. Microbiol. 33: 37-45.
  • Oki K., K. Washio, D. Matsui, S. Kato, Y. Hirata and M. Morikawa. 2010. The role of urease activity on biofilm formation by Staphylococcus sp. T-02 isolated from the toilet bowl. Biosci. Biotechnol. Biochem. 74: 583-589.
  • Pallett A. and K. Hand. 2010. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria. J. Antimicrob. Chemother. 65 Suppl. 3: 25-33.
  • Passerini de Rossi B., C. García, M. Calenda, C. Vay and M. Franco. 2009. Activity of levofloxacin and ciprofloxacin on biofilms and planktonic cells of Stenotrophomonas maltophilia isolates from patients with device-associated infections. Int. J. Antimicrob. Ag. 34: 260-264.
  • Spoering A. and K. Lewis. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials.J. Bacteriol. 183: 6746-6751.
  • Stickler D.J. 2008. Bacterial biofilms in patients with indwelling urinary catheters. Nat. Clin. Pract. Urol. 5: 598-608.
  • Stickler D.J. and R.C.L. Feneley. 2011. The encrustation and blockage of long-term indwelling bladder catheters: a way forward in prevention and control. Spinal. Cord. 48: 784-790.
  • Wagenlehner F. and K. Naber. 2012. Prescribing behaviour in urinary tract infection. Dtsch. Arztebl. Int. 109: 876-877.
  • Wilde M., M. McDonald, J. Brasch, J. McMahon, E. Fairbanks, S. Shah, W. Tang and E. Scheid. 2013. Long-term urinary catheter users self-care practices and problems. J. Clin. Nurs. 22: 359-367.
  • Yang L., Y. Liu, H. Wu, N. Hoiby, S. Molin and Z. Song. 2011. Current understanding of multi-species biofilms. Int. J. Oral. Sci. 3: 74-81.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1d13683f-4e86-4a59-9773-95edeb6c1dee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.