PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 24 | 3 |

Tytuł artykułu

Ability of Cyanobacteria and green algae to improve metabolic activity and development of willow plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The ability of Cyanobacteria and green algae to improve physiological activity and plant development gives a promising perspective and has a useful potential in practice, although literature concerning this issue is scanty. The purpose of this study was to assess the influence of two species of Cyanobacteria (Microcystis aeruginosa MKR 0105, Anabaena sp. PCC 7120) and one of green algae (Chlorella sp.) on select physiological processes, determining rooting of cuttings and the subsequent growth of willow (Salix viminalis L.) plants. Two procedures were used to apply sonicated and unsonicated monocultures of Cyanobacteria and green algae to woody cuttings: (i) four-day soaking of cuttings which were then rooted in universal horticulture substrate in a vegetation chamber or in a field and watered with tap water, and (ii) moistening the substrate in which the untreated cuttings were subsequently rooted and plants were grown. The cuttings treated with water, GA3, IBA, Bio-Algeen S90, and environmental sample were the control. The results show that the used monocultures of Cyanobacteria and green algae significantly stimulated some metabolic processes, thus having an important impact on plant development. Their application increased the stability of cytomembranes and intensified activity of net photosynthesis, transpiration, stomatal conductance, dehydrogenases, RNase, acid, and alkaline phosphatase, and decreased intercellular CO₂ concentration in the rooted cuttings and plants. These physiological events caused increased rooting of willow cuttings and plant growth under laboratory and field conditions.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

24

Numer

3

Opis fizyczny

p.1003-1012,fig.,ref.

Twórcy

autor
  • Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland
  • Department of Ecophysiology and Plant Development, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland

Bibliografia

  • 1. SAHU D., PRIYADARSHANI I., RATH B. Cyanobacteria – as potential biofertilizer. CIB Tech Journal of Microbiology ISSN: 2319-3867. 1, (2-3), 20, 2012.
  • 2. HAROUN S.A., HUSSEIN M.H. The promotive effect of algal biofertilizers on growth, protein pattern and some metabolic activities of Lupinus termis plants grown in siliceous soil. Asian Journal of Plant Sciences. 2, (13), 944, 2003.
  • 3. MASOJÍDEK J., PRÁŠIL O. The development of microalgal biotechnology in the Czech Republic. J. Ind. Microbiol. Biot. 37, (12), 1307, 2010.
  • 4. CHOJNACKA A., ROMANOWSKA-DUDA Z.B., GRZESIK M., PSZCZOLKOWSKI W., SAKOWICZ T. Cyanobacteria as a source of bioactive compounds for crop cultivation. In: K. Wolowski, J. Kwandrans, A.Z. Wojtal (Eds), Taxonomy the queen of science – the beauty of algae. Book of abstracts of the 29th International Phycological Conference Krakow. pp. 81-82, 2010.
  • 5. NUNNERY J.K., MEVERS E., GERWICK W.H. Biologically active secondary metabolites from marine cyanobacteria. Curr. Opin. Biotech. 21, (6), 787, 2010.
  • 6. PEREZ-GARCIA O., ESCALANTE F.M.E., DE-BASHAN L.E., BASHAN Y. Heterotrophic cultures of microalgae: Metabolism and potential products. Water Res. 45, 11, 2011.
  • 7. PSZCZOLKOWSKI W., ROMANOWSKA-DUDA Z., OWCZARCZYK A., GRZESIK M., SAKOWICZ T., CHOJNACKA A. Influence of secondary metabolites from Cyanobacteria on the growth and plant development. Phycological Reports: Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective. Institute of Botany Polish, Academy of Sciences, Krakow. pp. 195-203, 2012.
  • 8. MARKOU G., NERANTZIS E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 31, 1532, 2013.
  • 9. SPILLER H., GUNASEKARAN M. Ammonia-excreting mutant strain of the cyanobacterium Anabaena variabilis supports growth of wheat. Applied of Microbiology and Biotechnology. 33, (4), 477, 1990.
  • 10. NILSSON M., RASMUSSEN U., BERGMAN B. Competition among symbiotic cyanobacterial Nostoc strains forming artificial associations with rice (Oryza sativa). FEMS Microbiology Letters. 245, 139, 2005.
  • 11. KARTHIKEYANB N., PRASANNAA R., NAINB L., KAUSHIK B.D. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur. J. Soil Biol. 43, (1), 23, 2007.
  • 12. FALCH B.S., KONIG G.M., WRIGHT A.D., STICHER O., ANGERHOFER C.K., PEZZUTO J.M., BACHMANN H. Biological activities of Cyanobacteria: evaluation of extracts and pure compounds. Planta Medica. 61, 321, 1995.
  • 13. KREITLOW S., MUNDT S., LINDEQUIST U. Cyanobacteria – a potential source of new biologically active substances. J. Biotechnol. 70, 61, 1999.
  • 14. BURJA A.M., BANAIGS B., ABOU-MANSOUR E., BURGESS J.G., WRIGHT P.C. Marine cyanobacteria – a prolific source of natural products. Tetrahedron. 57, 9347, 2001.
  • 15. SHANAN N.T., HIGAZY A.M. Integrated biofertilization management and cyanobacteria application to improve growth and flower quality of Matthiola incana. Research Journal of Agriculture and Biological Science. 5, (6), 1162, 2009.
  • 16. ROMANOWSKA-DUDA Z.B., GRZESIK M., OWCZARCZYK A., MAZUR-MARZEC H. Impact of intra and extracellular substances from Cyanobacteria on the growth and physiological parameters of grapevine (Vitis vinifera). In: 20th International Conference on Plant Growth Substance (IPGSA), Book of abstracts 28.07- 02.08.2010. Universitat Rovira i Virgili, Tarragona. Spain, 118, 2010.
  • 17. NAIN L., RANA A., JOSHI M., JADHAV S.D., KUMAR D., SHIVAY Y.S., PAUL S., PRASANNA R. Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil. 331, 217, 2010.
  • 18. GORELOVA O.A. Communication of cyanobacteria with plant partners during association formation. Microbiology. 75, (4), 465, 2006.
  • 19. ROMANOWSKA-DUDA Z.B., GRZESIK M. The use of biometric measurements of plants in the environment mionitoring and biomass production for renewal energy. In: Kolwzan B, Grabasa K. (Eds.). Ekotoksykologia w Ochronie Środowiska, PZITS. pp. 327-334, 2008 [In Polish].
  • 20. KALAJI M.H., CARPENTIER R., ALLAKHVERDIEV S.I., BOSA K. Fluorescence parameters as an early indicator of light stress in barley. Journal Photochemistry and Photobiology B. 112, 1, 2012.
  • 21. KALAJI M.H., SCHANSKER G., LADLE R.J., GOLTSEV V., BOSA K., ALLAKHVERDIEV S. I., BRESTIC M., BUSSOTTI F., CALATAYUD A., DĄBROWSKI P., ELSHEERY N. I, FERRONI L., GUIDI L., HOGEWONING S. W., JAJOO A., MISRA A. N., NEBAUER S. G., PANCALDI S., PENELLA C., POLI D., POLLASTRINI M., ROMANOWSKA-DUDA Z. B., RUTKOWSKA B., SERÔDIO J., SURESH K., SZULC W., TAMBUSSI E., YANNICCARI M., ZIVCAK M. Frequently Asked Questions about chlorophyll fluorescence: practical issues. Photosynth. Res. (DOI 10.1007/s11120-014-0024-6), 2014.
  • 22. KNYPL J.S., KABZIŃSKA E. Growth, phosphatase and ribonuclease activity in phosphate deficient Spirodela oligorrhiza cultures. Biochem. Physiol. Pflanzen. 17, 279, 1977.
  • 23. GORNIK K., GRZESIK M.. Effect of Asahi SL on China aster ‘Aleksandra’ seed yield, germination and some metabolic events. Acta Physiol. Plant. 24, (4), 379, 2002.
  • 24. RANA A., JOSHI M., PRASANNA R., SHIVAY R.S., NAIN L. Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur. J. Soil Biol. 50, 118, 2012.
  • 25. EL MODAFAR C., ELGADDA M., EL BOUTACHFAITIB R., ABOURAICHA E., ZEHHARA N., PETIT E., EL ALAOUI-TALIBIA Z., COURTOISB B., COURTOISB J. Induction of natural defence accompanied by salicylic acid-dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Sci. Hortic. - Amsterdam. 138, 55, 2012.
  • 26. HUSSAIN A., HASNAIN S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World Journal Microbiology and Biotechnology. 28, 1459, 2012.
  • 27. GLICK B.R., PATTEN C.L., HOLGUIM G., PENROSE D.M. Biochemical and genetic mechanisms used by plant growth promoting bacteria. ICP, Covent Garden, London. 1999.
  • 28. SERGEEVA E., LIAIMER A., BERGMAN B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria. Planta. 215, 229, 2002.
  • 29. JOHANSSON C., BERGMAN B. Early events during the establishment of Gunnera–Nostoc symbiosis. Planta. 188, 403, 1992.
  • 30. RODGERS G.A., STEWART W.D.P. The cyanophytehepatic symbiosis. Morphology and physiology. New Phytol. 78, 441, 1977.
  • 31. PETERS G.A. Azolla and other plant-cyanobacteria symbioses: aspects of form and function. Plant Soil. 137, 193, 1991.
  • 32. GRZESIK M., ROMANOWSKA-DUDA Z.B. Improvements in Germination, Growth, and Metabolic Activity of Corn Seedlings by Grain Conditioning and Root Application with Cyanobacteria and Microalgae. Pol. J. Environ. Stud. 23, (4), 1147, 2014.
  • 33. OBREHT Z., KERBY N.W., GANTAR M., ROWELL P. Effects of root-associated N₂-fixing cyanobacteria on the growth and nitrogen content of wheat (Triticum vulgare L.) seedlings. Biol. Fert. Soils. 15, (1), 68, 1993.
  • 34. GRZESIK M., ROMANOWSKA-DUDA Z.B. The effect of potential climatic changes, Cyanobacteria, Biojodis and Asahi SL on development of the Virginia fanpetals (Sida hermaphrodita) plants. Pamiętnik Pulawski. 151, 483, 2009.
  • 35. MOHAMMADI K., GHALAVAND A., AGHAALIKHANI M. Study the Efficacies of Green Manure Application as Chickpea Per Plant. World Academy of Science, Engineering and Technology 46, 233, 2010.
  • 36. DICK W.A., TABATABAI M.A. Significance and potential uses of soil enzymes. In: FB Metting (Ed). Soil microbial ecology: application in agricultural and environmental management. Dekker, New York. pp. 95-125, 1993.
  • 37. BADEK B., VAN DUIJN B., GRZESIK M. Effects of water supply methods and seed moisture content on germination of China aster (Callistephus chinensis) and tomato (Lycopersicon esculentum Mill.) seeds. Eur. J. Agron. 24, (1), 45, 2006.
  • 38. BADEK B., VAN DUIJN B., GRZESIK M. Effects of water supply methods and incubation on germination of China aster (Callistephus chinensis) seeds. Seed Sci. Technol. 35, (3), 569, 2007.
  • 39. DE-MULE M.C.Z., DE CAIRE G.Z., DE CANO M.S., PALMA R.M., COLOMBO K. Effect of cyanobacterial inoculation and fertilizers on rice seedlings and post harvest soil structure. Comm. Soil Sci.Plant Anal. 30, 97, 1999.
  • 40. DE-CAIRE G.Z., DE CANO M.S., PALMA R.M., DE MULE C.Z. Changes in soi enzymes activity by cyanobacterial biomass and exo-polysaccharides. Soil Biol. Biochem. 32, 1985, 2000.
  • 41. LEHMANN K., HAUSE B., ALTMANN D., KÖCK M. Tomato ribonuclease LX with the functional endoplasmic reticulum retention motif HDEF is expressed during programmed cell death processes, including xylem differentiation, germination, and senescence. Plant Physiol. 127, 436, 2001.
  • 42. SINDELAROVA M., SINDELAR L., WILHELMOVA N., PROCHAZKOVA D. Changes in key enzymes of viral-RNA biosynthesis in chloroplasts from PVY and TMV infected tobacco plants. Biol. Plant. 49, (3), 471, 2005.
  • 43. SRIVASTAVA S., EMERY R.J.N., KUREPIN L.V., REID D.M., FRISTENSKY B., KAV N.N.V. Pea PR 10.1 is a ribonuclease and its transgenic expression elevates cytokinin levels. Plant Growth Regul. 49, (1), 17, 2006.
  • 44. BOOKER F.L. Influence of ozone on ribonuclease activity in wheat (Triticum aestivum) leaves. Physiol. Plant. 120, (2), 249, 2004.
  • 45. ROMANOWSKA-DUDA Z., TARCZYŃSKA M. The influence of Microcystin-LR and hepatotoxic cyanobacterial extract on water plant (Spirodela oligorrhiza). Environmental. Toxicology, by John Wiley & Sons, Inc. 17, (3), 434, 2002.
  • 46. ROMANOWSKA-DUDA Z., MANKIEWICZ J., TARCZYŃSKA M.,. WALTER Z., ZALEWSKI M. The effect of toxic cyanobacteria (blue-green algae) on water plants and animal cells. Pol. J. Environ. Stud. 11, (5), 561, 2002.
  • 47. SWARNALAKSHMI K., PRASANNA C.R., KUMAR A., PATTNAIK S.C., CHAKRAVARTY K.C., SHIV Y.S.A., SINGH B.R., SAXENA A.K. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur. J. Soil Biol. 55, 107, 2013.
  • 48. SAADATNIA H., RIAHI H. Cyanobacteria from paddy fields in Iran as a biofertilizer in rice plants. Plant Soil and Environment 55, (5), 207, 2009.
  • 49. WILSON L.T. Cyanobacteria: A Potential Nitrogen Source in Rice Fields. Texas Rice 6, 9, 2006.
  • 50. ROMANOWSKA-DUDA Z., WOLSKA A., MAŁECKA A. Influence of blue-green algae as nitrogen fertilizer supplier in regulation of water status in grapevines under stress conditions. COST 858: Water Transport and Aquaporins in Grapevines, October 20-23, Alcudia, Spain. 7, 2004.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1b846c6a-6c80-4da6-861b-7cbb44d885d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.