PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 15 | 1 |

Tytuł artykułu

Relationship between different physical properties of tomato fruits and water loss during postharvest

Treść / Zawartość

Warianty tytułu

PL
Relacje między różnymi fizycznymi właściwościami owoców pomidora a utratą wody po zbiorze

Języki publikacji

EN

Abstrakty

EN
Water loss contributes to acceleration of postharvest senescence of tomato (Solanum lycopersicum L.). Ten cultivars representing two fruit types were studied. Fruit were stored at 25ºC and 75% relative humidity. Physical characteristics were examined to determine relationships between physical properties and water loss rate in tomato fruit. Water loss rate increased almost linearly with storage time and was different for each cultivar. When the vapour pressure deficit was increased the fruit water loss rate was affected among cultivars. Water loss rate was positively correlated with initial fruit water content. An increase in the surface are a to volume of fruit may explain the differences in water loss that was observed between cultivars. The cuticle thickness did not influence the differences in the fruit water loss during storage. However, it was observed the existence of a positive correlation between Surface Area of the Peduncle Scar to Fruit Surface Area ratio and water loss of the tomato fruit.
PL
Utrata wody przyczynia się do przyspieszenia starzenia się pomidorów (Solanum lycopersicum L.). Badano 10 odmian reprezentujących dwa typy owoców. Owoce przechowywano w temperaturze 25ºC przy 75% wilgotności względnej. Badano cechy fizyczne w celu określenia związków między fizycznymi cechami a wskaźnikiem utraty wody w owocach pomidora. Wskaźnik utraty wody wzrastał prawie w sposób liniowy wraz z czasem przechowywania i był inny dla każdej odmiany. Zwiększony deficyt ciśnienia pary wpływał na wskaźnik utraty wody w owocach poszczególnych odmianach.Wskaźnik utraty wody był pozytywnie skorelowany z początkową zawartością wody w owocach. Zwiększenie powierzchni do objętości owocu może wyjaśniać różnice w utracie wody zaobserwowane pomiędzy odmianami. Grubość skórki nie wpływała na różnice w utracie wody podczas przechowywania. Zaobserwowano jednak dodatnią korelację między stosunkiem powierzchni blizny po szypułce a powierzchnią owocu w stosunku do utraty wody w owocach pomidora.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

15

Numer

1

Opis fizyczny

p.13-25,fig.,ref.

Twórcy

autor
  • Departamento de Produccion Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805 C.P. S3080HOF, Esperanza, Santa Fe, Argentina
  • Universidad Nacional del Litoral, Argentina

Bibliografia

  • Bartz, J.A., Showalter, R.K. (1981). Infiltration of tomatoes by aqueous bacterial suspensions. Postharv. Pathol. Mycotox., 71(5), 515–518.
  • Bartz, J.A., Brecht, J.K. (2005). Postharvest physiology and pathology of vegetables. Taylor and Francis, NY, 816 p.
  • Ben-Yehoshua, S., Rodov, V. (2003). Transpiration and water stress. In: Postharvest physiology and pathology of vegetable (2nd ed.), Bartz, I.A., Brecht J.K. (eds). New York, USA,119–173.
  • Ben-Yehoshua, S. (1987). Transpiration, water stress and gas exchange. In: postharvest physiol-ogy of vegetables, Weichmann, J. (ed.). New York, USA. Marcel Dekker Inc. p. 113–172.
  • Cameron, A.C., Yang, S.F. (1982). A simple method for the determination of resistance to gas diffusion in plant organ. Plant Physiol., 70, 21–23.
  • Díaz-Pérez, J.C. (1998). Transpiration rates in eggplant fruit as affected by fruit and calyx size. Postharv. Biol. Technol., 13(1), 45–49.
  • Díaz-Pérez, J.C., Muy-Rangel, M.D., Mascorro, A.G. (2007). Fruit size and stage of ripeness affect postharvest water loss in bell pepper fruit (Capsicum annuum L.). J. Sci. Food Agri-cult., 87, 68–73.
  • Dodds, G.T., Ludford, P.M. (1990). Surface topology of chilling injury of tomato fruit. HortSci., 25(11), 1416–1419.
  • Dorais, M., Papadopoulos, A.P., Gosselin, A. (2001). Greenhouse tomato fruit quality. Horticult. Rev., 26, 239–319.
  • Hertog, M.L., Ben-Arie, R., Róth, E., Nicolaï, B.M. (2004). Humidity and temperature effects on invasive and non-invasive firmness measures. Postharv. Biol. Technol., 33, 79–91
  • Isaacson, T., Kosma, D.K., Matas, A.J., Buda, G.J., He, Y., Yu, B., Pravitasari, A., Batteas, J.D., Stark, R.E., Jenks, M.A., Rose, J.C.C. (2009). Cutin deficiency in the tomato fruit cuticle con-sistently affects resistance to microbial infection and biomechanical properties, but not tran-spiration water loss. Plant J., 60, 363–377.
  • Kader, A.A. (2002). Postharvest biology and technology: An overview. In: Postharvest technol-ogy of horticultural crops, Kader A.A. (ed.). Oakland, California, USA. Publications Division of Agrigulture and Natural Resources, University of California, p. 15–20.
  • Kerstiens, G. (2006). Water transport in plant cuticles: an update. J. Exp. Bot., 57, 2493–2499.
  • Lownds, N.K., Banaras, M., Bosland, P.W. (1993). Relationships between postharvest water loss and physical properties of pepper fruit (Capsicum annuum L.). HortSci., 28(12), 1182–1184.
  • Lownds, N.K., Banaras, M., Bosland P.W. (1994). Postharvest water loss and storage quality of nine pepper (Capsicum) cultivars. HortSci., 29, 191–193.
  • Luque, P., Bruque, S., Heredia, A. (1995). Water permeability of isolated cuticular membranes: An structural analysis. Ann. Bot., 1183, 417–422.
  • Karlova, R., Chapman, N., David, K., Angenent, G.C., Symour, G.B., de Maagd, R.A. (2014). Transcriptional control of fleshy fruit development and ripening. J. Exp. Bot., 65(16), 4527–4541.
  • Kosma, D.K., Parsons, E.P., Isaacson, T., Lü, S., Rose, J.K.C., Jenks, M.A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiol. Plant., 139(1), 107–117.
  • Maarten, L.A., Hertog, T.M., Ben-Arie, R., Róth, E., Nicolaï, B.M. (2004). Humidity and tem-perature effects on invasive and non-invasive firmness measures. Postharv. Biol. Technol., 33(1), 79–91.
  • Nascimento Nunes, M.C. (2008). Color atlas of postharvest quality of fruits and vegetables. Blackwell Publishing. Iowa, USA, 463 p.
  • Nobel, P.S. (2009). Physicochemical and environmental plant physiology, 4th ed., Elsevier, Lon-don, UK, 604 p.
  • Nunes, C.N., Emond, J.P. (2007). Relationship between weight loss and visual quality of fruits and vegetables. Proc. Fla. State Hort. Soc., 120, 235–245.
  • Robinson, J.E., Browne, K.M., Burton, W.G. (1975). Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol., 81, 399–408.
  • Saladié, M., Matas, A.J., Isaacson, T., Jenks, M.A., Goodwin, S.M., Niklas, K.J. Xiaolin, R., Labavitch, J.M., Shackel, K.A., Fernie, A.R., Lytovchenko, A., OʼNeill, M.A., Watkins, C.B., Rose, J.K.C. (2007). A revaluation of the key factors that influence tomato fruit softening and integrity. Plant Physiol., 144, 1012–1028.
  • Saltveit, M.E., Jr. (1991). Determining tomato fruit maturity with nondestructive in vivo nuclear magnetic resonance imaging. Postharv. Biol. Technol., 1, 153–159.
  • Shirazi, A., Cameron, A.C. (1993). Measuring transpiration of tomato and other detached fruit. HortSci., 28(10), 1035–1038.
  • Tanada-Palmu, P., Helén, H., Hyvönen, L. (2000). Preparation, properties and applications of wheat gluten edible films. Agricult. Food Sci., 9, 23–35.
  • Vogg, G., Fischer, S., Leide, J., Emmanual, E., Jetter, R., Levy, A.A., Riederer, M. (2004). To-mato fruit cuticular waxes and their effects on transpiration barrier properties: functional characterization of a mutant deficient in a very-long-chain fatty acid b-ketoacyl-CoA syn-thase. J. Exp. Bot., 55(401), 1401–1410.
  • Wills, R.B., McGlasson, W.B., Graham, D., Lee, T.H., Hall, E.G. (1989). Postharvest. An intro-duction to the physiology and handling of fruit and vegetables. Van Nostand Reinhold. New York, 174 p.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1b1f0545-2281-42d9-a5f5-fe917ccb3ed8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.