PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 15 | 2 |

Tytuł artykułu

The use of Big Data in healthcare: lessons for developing countries from Uzbekistan

Treść / Zawartość

Warianty tytułu

PL
Zastosowanie Big Data w ochronie zdrowia: informacje dla krajów rozwijających się na przykładzie Uzbekistanu

Języki publikacji

EN

Abstrakty

EN
The use of Big Data (BD) in medicine is fundamental for the development of digital healthcare, including the implementation of smart medicine and artificial intelligence (AI) technologies. Proper organization of BD is necessary for the creation and training of AI algorithms, and for AI to work with great efficiency and accuracy. In this review, the existing models for creating and storing BD sets are described, and the numerous opportunities provided to the healthcare system by the effective use of these tools are outlined. The BD phenomenon is especially important for the developing countries, which can use the example of already completed projects and achievements in the field of BD to more effectively implement such technologies in their own countries. However, there are still some problems with the implementation of BD technologies in practical healthcare of the developing countries. One of the fundamental issues is the financial cost of developing, implementing and maintaining a system for collecting, storing and using BD, including the cost of highly qualified personnel, and expensive equipment and network infrastructure that needs to be regularly updated. Another problem is the confidentiality and security of data in healthcare.
PL
Zastosowanie Big Data (BD) wmedycynie jest kluczowe dla rozwoju cyfrowej opieki zdrowotnej, w tym technologii smart w medycynie i wprowadzeniu technologii sztucznej inteligencji (AI, ang. artificial intelligence). Bez dobrze zorganizowanej technologii BD nie ma możliwości stworzenia i dopracowania algorytmów AI. Tylko wtedy AI będzie mogło pracować skutecznie i dokładnie. W niniejszym przeglądzie, autorzy analizują istniejące modele tworzenia zestawów BD, przechowywania ich, a także wiele możliwości, które otwierają się dla systemu opieki zdrowotnej w przypadku skutecznego zastosowania BD i AI. Zastosowanie BD jest szczególnie istotne w przypadku krajów rozwijających się, które mogą korzystać z przykładów zrealizowanych projektów i osiągnięć w dziedzinie BD, w celu wdrożenia takich technologii w swoich krajach. Niemniej jednak, w praktyce, wdrożenie technologii BD w służbie zdrowia rozwijających się krajów wiąże się z różnymi problemami. Jedną z najbardziej istotnych kwestii jest koszt rozwijania, wdrażania i utrzymania systemu zbierania, przechowywania i wykorzystywania BD, włączając w to wysoko wykwalifikowany personel oraz kosztowne wyposażenie i infrastrukturę sieci, która musi być regularnie modernizowana. Kolejny problem stanowi natomiast kwestia poufności i ochrony danych w służbie zdrowia.

Wydawca

-

Rocznik

Tom

15

Numer

2

Opis fizyczny

p.142-151,fig.,ref.

Twórcy

autor
  • Innovation Centre, Tashkent Pediatric Medical Institute, Bagishamal str.223, 100140 Tashkent, Uzbekistan
  • Innovation Centre, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan
autor
  • Innovation Centre, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan

Bibliografia

  • 1. Cambridge English Dictionary [Internet]. Cambridge: Cambridge University Press. Big Data [cited 2021 Feb 18]. Available from: https://dictionary.cambridge.org/dictionary/english/big-data
  • 2. Collins English Dictionary [Internet]. Glasgow: HarperCollins Publishers. Big Data [cited 2021 Feb 18]. Available from: https://www.collinsdictionary.com/dictionary/english/big-data
  • 3. Longman’s Dictionary of Modern English [Internet]. London: Pearson. Big Data [cited 2021 Feb 18]. Available from: https://www.ldoceonline.com/dictionary/big-data
  • 4. Lynch C. Big data: how do your data grow?. Nature. 2008; 455(7209): 28-29. https://doi.org/10.1038/455028a
  • 5. Kornev M. [The history of the term “Big data”. Dictionaries, academic and business periodicals]. RSUH/RGGU Bulletin: Literary Theory. Linguistics. Cultural Studies, Series. 2018; 1: 81-85 (in Russian). https://doi.org/10.28995/2073-6355-2018-1-81-85
  • 6. Kaplan A, Haenlein M. Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons. 2019; 62(1): 15-25. https://doi.org/10.1016/j.bushor.2018.08.004
  • 7. Averkin AN, Gaase-Rapoport MG, Pospelov DA. [Explanatory dictionary of artificial intelligence]. Radio and Communication. 1992; 256 (in Russian).
  • 8. McCarthy J. What is artificial intelligence? [Internet]. Stanford: Stanford University; 2007 [cited 2021 Apr 25]. Available from: http://www-formal.stanford.edu/jmc/whatisai/whatisai.html
  • 9. Google Trends. Comparative analysis of the trend of search queries for the terms Big Data and Big Data in Health for the period 2009-2020 [Internet]. Mountain View: Google LLC [cited 2021 Feb 18]. Available from: https://trends.google.com/trends/explore?date=2009-12-01%202020-12-31&q=Big%20Data,Big%20 Data%20in%20Health
  • 10. Springer Link. Comparative analysis of the scientific queries in the Springer Nature for the terms Big Data and Big Data in Health for the period 2009-2020 [Internet]. Cham: Springer Nature Switzerland AG [cited 2021 Apr 24]. Available from: https://link.springer.com/search?query=Big+Data&date-facet-mode=between&facetstart-year=2009&previous-start-year=2009&facet-end-year=2020&previous-end-year=2020
  • 11. Laney D. 3D data management: controlling data volume, velocity and variety. META Group Research Note. Stanford: META Group; 2001.
  • 12. www.developer.ibm.com [Internet]. North Castle: IBM. Big Data and analytics [cited 2021 Feb 19]. Available from: https://www.ibm.com/developerworks/ru/library/ba-adv-analytics-platform1
  • 13. McNulty E. Understanding Big Data: the seven V’s [Internet]. Berlin: Dataconomy; 2014 May 22 [cited 2021 Feb 19]. Available from: https://dataconomy.com/2014/05/seven-vs-big-data/
  • 14. Biehn N. The missing V’s in Big Data: viability and value [Internet]. San Francisco: WIRED [cited 2021 Feb 19]. Available from: https://www.wired.com/insights/2013/05/the-missing-vs-in-big-data-viability-and-value/
  • 15. Stanford Medicine. Health trends report: harnessing the power of data in health. Stanford: Stanford University School of Medicine; 2017.
  • 16. Densen P. Challenges and opportunities facing medical education. Transactions of the American Clinical and Climatological Association. 2011; 122: 48-58.
  • 17. Morgan S. The 2020 data attack surface report [Internet]. Northport: Cybercrime Magazine; 2020 Jun 8 [cited 2021 Apr 26]. Available from: https://cybersecurityventures.com/the-world-will-store-200-zettabytes-ofdata-by-2025/
  • 18. Faggella D. Where healthcare’s Big Data actually comes from [Internet]. Boston: Emerj Artificial Intelligence Research; 2018 [cited 2021 Apr 26]. Available from: https://www.techemergence.com/where-healthcaresbig-data-actually-comes-from
  • 19. Huesch D, Mosher TJ. Using it or losing it? The case for data scientists inside health care [Internet]. Waltham: NeJM Catalyst; 2017 May 4 [cited 2021 Apr 26]. Available from: https://catalyst.nejm.org/case-datascientists-inside-health-care/
  • 20. Chen HZ, Bonneville R, Roychowdhury S. Implementing precision cancer medicine in the genomic era. Semin Cancer Biol. 2019; 55: 16-27. https://doi.org/10.1016/j.semcancer.2018.05.009
  • 21. White S. A review of Big Data in health care: challenges and opportunities. Open Access Bioinformatics. 2014; 6: 13-18. https://doi.org/10.2147/OAB.S50519
  • 22. Suter-Crazzolara C. Better patient outcomes through mining of biomedical Big Data. Frontiers in ICT. 2018; 5: 30. https://doi.org/10.3389/fict.2018.00030
  • 23. Dash S, Shakyawar SK, Sharma M. Kaushik S. Big Data in healthcare: management, analysis and future prospects. Journal of Big Data. 2019; 6: 54. https://doi.org/10.1186/s40537-019-0217-0
  • 24. Stieb DM, Boot CR, Turner MC. Promise and pitfalls in the application of Big Data to occupational and environmental health. BMC Public Health. 2017; 17: 372. https://doi.org/10.1186/s12889-017-4286-8
  • 25. Collins B. Big Data and health economics: strengths, weaknesses, opportunities and threats. PharmacoEconomics. 2016; 34: 101-106. https://doi.org/10.1007/s40273-015-0306-7
  • 26. Marshall DA, Burgos-Liz L, Pasupathy KS, Padula WV, IJzerman MJ, Wong KP, et al. Transforming healthcare delivery: integrating dynamic simulation modelling and Big Data in health economics and outcomes research. PharmacoEconomics. 2016; 34: 115-126. https://doi.org/10.1007/s40273-015-0330-7
  • 27. Onukwugha E. Big Data and its role in health economics and outcomes research: a collection of perspectives on data sources, measurement, and analysis. PharmacoEconomics. 2016; 34: 91-93. https://doi.org/10.1007/s40273-015-0378-4
  • 28. Johnson OA, Hall PS, Hulme C. NETIMIS: dynamic simulation of health economics outcomes using Big Data. PharmacoEconomics. 2016; 34: 107-114. https://doi.org/10.1007/s40273-016-0384-1
  • 29. Fahr P, Buchanan J, Wordsworth S. A review of the challenges of using biomedical Big Data for economic evaluations of precision medicine. Appl Health Econ Health Policy. 2019; 17: 443-452. https://doi.org/10.1007/s40258-019-00474-7
  • 30. Fiebig DG. Big Data: will it improve patient-centered care?. Patient. 2017; 10: 133-139. https://doi.org/10.1007/s40271-016-0201-0
  • 31. Saracci R. Epidemiology in wonderland: Big Data and precision medicine. Eur J Epidemiol. 2018; 33: 245-257. https://doi.org/10.1007/s10654-018-0385-9
  • 32. Asche CV, Seal B, Kahler KH, Oehrlein EM, Baumgartner MG. Evaluation of healthcare interventions and Big Data: review of associated data issues. PharmacoEconomics. 2017; 35: 759-765. https://doi.org/10.1007/s40273-017-0513-5
  • 33. Peterson CB, Hamilton C, Hasvold P. From innovation to implementation: eHealth in the WHO European region. Copenhagen: WHO Regional Office for Europe; 2016. p. 98.
  • 34. Kolasa K, Redekop KW, Berler A, Zah V, Asche CV. Future of data analytics in the era of the general data protection regulation in Europe. PharmacoEconomics. 2020; 38: 1021-1029. https://doi.org/10.1007/s40273-020-00927-1
  • 35. Resolution of the President of the Republic of Uzbekistan of 17th Feb 2021 no. PP-4996. On measures to create conditions for the accelerated introduction of artificial intelligence technologies. National Database of Legislation. 18th Feb 2021; no. 07/21/4996/0127.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1ad27bf1-9aa3-48a6-9e1c-e3531b6fee7b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.