PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 64 | 2 |

Tytuł artykułu

Biologically-induced precipitation of minerals in a medium with zinc under sulfate-reducing conditions

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Sulfate-reducing microbial communities were enriched from soils collected in areas with crude-oil exploitation. Cultures were grown in modified Postgate C medium and minimal medium, with ethanol or lactate as an electron donor. The batch cultures were grown with addition of zinc in concentrations of 100–700 mg/l. A lack of increased protein concentration in the solutions compared with the control batch, was noted in cultures containing over 200 mg Zn²⁺/l. The 16S rRNA method was applied to determine the specific composition of the selected microorganism communities. The analysis indicated the presence of Desulfovibrio spp., Desulfobulbus spp. and Desulfotomaculum spp. in the communities. Diffractometric analysis indicated the presence of biogenic sphalerite in cultures with 100 and 200 mg Zn²⁺/l and elemental sulfur in cultures with 200 mg Zn²⁺/l. Other post culture sediments (300−700 mg Zn²⁺/l) contained only hopeite [Zn₃(PO₄)₂‧4H₂O] formed abiotically during the experiment, which was confirmed by studies of the activity of sulfate-reducing microbial communities.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

64

Numer

2

Opis fizyczny

p.149-155,fig.,ref.

Twórcy

autor
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, Warsaw, Poland
autor
  • Institute of Geochemistry, Mineralogy and Petrology, Faculty of Geology, University of Warsaw, Warsaw, Poland
  • Department of Biochemistry, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
autor
  • Department of Soil Sciences, Faculty of Agriculture and Biology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
autor
  • Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences - SGGW, Warsaw, Poland
  • Bionicum LTD, Warsaw, Poland

Bibliografia

  • Azabou S., T. Mechichi and S. Sayadi. 2007. Zinc precipitation by heavy-metal tolerant sulfate-reducing bacteria enriched on phosphogypsum as a sulfate source. Minerals Engineering 20: 173–178.
  • Barton L.L. and F.A. Tomei. 1995. Characteristics and activities of sulfate reducing bacteria, pp. 1–32. In: L. L. Barton (eds). Sulfate Reducing Bacteria. Plenum Press, Chap 1. New York.
  • Becking L.G.M.B. and D. Moore. 1961. Biogenic sulfides. Economic Geology 56: 259–272.
  • Brocklehurst K.R. and A.P. Morby. 2000. Metal-ion tolerance in Escherichia coli: analysis of transcriptional profiles by gene-array technology. Microbiology 146: 2277–2282
  • Castillo J., R. Pérez-López, M.A. Caraballo, J.M. Nieto, M. Martins, M.C. Costa, M. Olias, J.C. Cerón and R. Tucoulou. 2012. Biologically-induced precipitation of sphalerite-wurtzite nanoparticles by sulfate-reducing bacteria: Implications for acid mine drainage treatment. Science of the Total Environment 423: 176–184.
  • Collins M.D., S. Wallbanks, D.J. Lane, J. Shah, R. Nietupski, J. Smida, M. Dorsch and E. Stackebrandt. 1991. Phylogenetic analysis of the genus Listeria based on reverse transcriptase sequencing of 16S rRNA. International Journal of Systematic and Evolutionary Microbiology 41: 240–246.
  • Costa M.C., M. Martins, C. Jesus and J.C. Duarte. 2008. Treatment of acid mine drainage by sulphate-reducing bacteria using low cost matrices. Water Air Soil Pollut. 189: 149–162.
  • Drury W.J. 1999. Treatment of acid mine drainage with anaerobic solid-substrate reactors. Water Environmental Research 71: 1244–1250.
  • Feio M.J., V. Zinkevic, I.B. Beech, E. Llobet-Brossa, P. Eaton, J. Schmitt and J. Guezennec. 2004. Desulfovibrio alaskensis sp. nov., a sulphate reducing bacterium from a soured oil reservoir. International Journal of Systematic and Evolutionary Microbiology 54: 1747–1752.
  • Fosmire G.J. 1990. Zinc toxicity. American Journal Clinical Nutrition 51: 225–222.
  • Gramp J.P., J.M. Bigham, K. Sasaki and O.H. Touvien. 2007. Formation of Ni- and Zn-sulfides in cultures of Sulfate-Reducing Bacteria. Geomicrobiology Journal 24: 609–614.
  • Greenberg A.E., R.R. Trussell and L.S. Clesceri. 1985. Standard methods for the examination of water and wastewater, pp. 11–20. APHA-AWWWA-WPCF, Washington, DC.
  • Hao O.J, J.M. Chen, L. Huang and R.L. Buglass. 1996. Sulfate-reducing bacteria. Critical Reviews in Environmental Science and Technology 26: 155–187.
  • Hedderich R., O. Klimmek, A. Kroger, M. Dirmeier, M. Kelller and O. Stetter. 1999. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiology Reviews 22: 353–381.
  • Jonson D.B. and K.B. Halleberg. 2003. The microbiology of acidic mine wasters. Res. Microbology 154: 466–473.
  • Kaksonen A.H. and J.A. Puhakka. 2007. Sulfate reduction based bioprocesses for the treatment of acid mine drainage and the recovery of metals. Engineering in Life Sciences 7: 541–564.
  • Labrenz M., G.K. Druschel, T. Thomsen-Ebert, B. Gilbert, S.A. Welch, K.M. Kemmer, G.A. Logan, R.E. Summons, G. De Stasio, P.L. Bond and others. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744–1747.
  • Ledin M. and K. Pedersen. 1996. The environmental impact of mine wastes – Roles of microorganisms and their significance in treatment of mine wastes. Earth Science Reviews 41: 67–108.
  • Loka Bharathi P.A., V. Sathe and D. Chandramohan. 1990. Effect of lead, mercury and cadmium on a sulphate-reducing bacterium. Environmental Pollutants 67 (4): 361–74.
  • Luptakova A. and M. Kusnierova. 2005. Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 77: 97–102.
  • Martins M., M.L. Faleiro, R.J. Barros, A.R. Verissimo, M.A. Barreiros and M.C. Costa. 2009a. Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. Journal of Hazardous Materials 166: 706–713.
  • Martins M., M.L. Faleiro, R.J. Barros, A.R. Verissimo and M.C. Costa. 2009b. Biological sulphate reduction using food industry wastes as carbon sources. Biodegradation Journal 20 (4): 559–567.
  • Moreau J.W., P.K. Weber, M.C. Martin, B. Gilbert, I.D. Hutcheon and J.F. Banfield. 2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316: 1600–1603.
  • Moreau J.W., R.I. Webb and J.F. Banfield. 2004. Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. American Mineralogist 89: 950–960.
  • Ong S-A., E. Toorisaka, M. Hirata and T. Hano. 2010. Adsorption and toxicity of heavy metals on activated sludge. Science Asia 36: 204–209.
  • Postgate J.R. 1984. The sulphate reducing bacteria, pp. 1–159. 2nd ed. Cambridge University Press, Cambridge.
  • Poulson S.R., P.J.S. Colberg and J.I. Drever. 1997. Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans. Geomicrobiology Journal 14: 41–49.
  • Radhika V., S. Subramanian and K.A. Natarajan. 2006. Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Research 40: 3628–3636.
  • Roy A.B and P.A. Trudinger. 1970. The biochemistry of inorganic compounds of sulphur, pp. 1–399. Cambridge University Press,Cambridge.
  • Utgikar V.P., B-Y. Chen, N. Chaudhary, H.H. Tabak, J.R. Hainjes and R. Govind. 2001. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC500. Environmental Toxicology and Chemistry 20: 2662–2669.
  • Utgikar V.P., S.M. Harmon, N. Chaudhary, H.H. Tabak, R. Govind and J.R. Haines. 2002. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Environomental Toxicolology 17: 40–48.
  • Vainshtein M., H. Hippe and R.M. Kroppenstedt. 1992. Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst. Applied Microbiology 15: 554–556.
  • Wolicka D. and W. Kowalski. 2006. Biotransformation of phosphogypsum in petroleum-refining wastewaters. Polish J. Environ. Stud. 15 (2): 355–360.
  • Zinkevich V., I. Bogdarina, H. Kang, M. Hill, R. Tapper and I.B. Beech. 1996. Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int. Biodeterior Biodegrad 37: 163–172.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1a8cc842-1cb9-4e79-9077-3c3f510c0974
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.