PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 25 | Special Issue S3 |

Tytuł artykułu

Exploration and mining learning robot of autonomous marine resources based on adaptive neural network controller

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
To study the autonomous learning model of the learning robot for marine resource exploration, an adaptive neural network controller was applied. The motion characteristics of autonomous learning robots were identified. The mathematical model of the multilayer forward neural network and its improved learning algorithm were studied. The improved Elman regression neural network and the composite input dynamic regression neural network were further discussed. At the same time, the diagonal neural network was analysed from the structure and learning algorithms. The results showed that for the complex environment of the ocean, the structure of the composite input dynamic regression network was simple, and the convergence was fast. In summary, the identification method of underwater robot system based on neural network is effective

Słowa kluczowe

Wydawca

-

Rocznik

Tom

25

Opis fizyczny

p.78-83,fig.,ref.

Twórcy

autor
  • School of Management, Hefei Uniwersity of Technology, Hefei 230009, China

Bibliografia

  • 1. M. Rahmani, and A. Ghanbari, Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator, Vol. 80, pp.117–136, 2016.
  • 2. H. N. Nguyen, and J. Zhou, A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network, Vol. 151, pp. 996–1005, 2015.
  • 3. W. He, and A. O. David, Neural network control of a robotic manipulator with input dead zone and output constraint,Vol. 46, No. 6, pp. 759–770, 2016.
  • 4. M. Beyeler, and N. Oros, A GPU-accelerated cortical neural network model for visually guided robot navigation, Vol. 72, pp. 75–87, 2015.
  • 5. P. K. Panigrahi, and S. Ghosh, Navigation of autonomous mobile robot using different activation functions of wavelet neural network, Vol. 25, No. 1, pp. 21–34, 2015.
  • 6. I. V. Serban, and A. Sordoni, Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models, Vol. 16, pp. 3776–3784, 2016.
  • 7. P. Van Cuong, and W. Y. Nan, Adaptive trajectory tracking neural network control with robust compensator for robot manipulators, Vol. 27, No. 2, pp. 525–536, 2016.
  • 8. A. Pandey, and D. R. Parhi, New algorithm for behaviour-based mobile robot navigation in cluttered environment using neural network architecture, Vol. 13, No. 2, pp. 129–141, 2016.
  • 9. T. Wang, and H. Gao, A Combined Adaptive Neural Network and Nonlinear Model Predictive Control for Multirate Networked Industrial Process Control, Vol. 27, No. 2, pp. 416–425, 2016.
  • 10. A. Graves, and G. Wayne, Hybrid computing using a neural network with dynamic external memory, Vol. 538, No. 7626, pp. 471, 2016.
  • 11. P. Zamanian, and M. Kasiri, Investigation of Stage Photography in Jee Lee’s Works and Comparing them With the Works of Sandy Skoglund, Acta Electronica Malaysia, Vol. 2, No. 1, pp. 01–06, 2018.
  • 12. B. Q. Li, and Z. Li (). Design of Automatic Monitoring System for Transfusion, Acta Electronica Malaysia, Vol. 2, No. 1, pp. 07–10, 2018.
  • 13. Z. H. Yan, Modeling and Kinematics Simulation of Plane Ten-Bar Mechanism of Warp Knitting Machine Based on Simcape/Multibody, Acta Mechanica Malaysia, Vol. 2, No. 2, pp. 15–18, 2018.
  • 14. A. Abugalia, M. Shaglouf, Analysis of Different Models of Moa Surge Arrester for The Transformer Protection, Acta Mechanica Malaysia, Vol. 2, No. 2, pp. 19–21, 2018.
  • 15. F. De’nan, F. Mohamed Nazri, and N. S. Hashim, Finite Element Analysis on Lateral Torsional Buckling Behaviour Oi I-Beam with Web Opening, Engineering Heritage Journal, Vol. 1, No. 2, pp. 19–22, 2017.
  • 16. M. A. Hassan, and M. A. Mohd Ismail, Literature Review for The Development of Dikes’s Breach Channel Mechanism Caused by Erosion Processes During Overtopping Failure, Engineering Heritage Journal, Vol. 1, No. 2, pp. 23–30, 2017.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-19cff5a8-f4bc-4ec7-a665-611add01a7db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.