PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 80 | 3 |

Tytuł artykułu

The application of iPSCs in Parkinson’s disease

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The discovery and application of induced pluripotent stem cells (iPSCs) provide a novel treatment modality for diseases, which remain incurable. Particularly, in the treatment of neurodegenerative diseases such as Parkinson’s disease (PD), iPSC‑technology holds an interesting prospect for replacement therapy. Currently, the prognostic improvement of PD is limited and relies on symptomatic treatment. However, the symptomatic dopamine‑replacement therapies lose their long‑duration responses, and novel regenerative treatment modalities are needed. Animal models have provided valuable information and identified pathogenic mechanisms underlying PD but the lack of models that recapitulate the complex pathophysiology of the disease postpones further development of novel therapeutics. This review summarizes the possible uses of iPSCs in PD and discusses the future investigations needed for iPSCs as a possible treatment of PD patients.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

80

Numer

3

Opis fizyczny

p.273-285,fig.,ref.

Twórcy

  • Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
  • Department of Nuclear Medicine and PET Center, Department of Clinical Medicine, Aarhus University and Hospital, Aarhus, Denmark
autor
  • Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
  • Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
autor
  • Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Aarhus University Hospital, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

Bibliografia

  • Alvarez‑Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Höglinger GU, Oertel WH, Hartmann A (2008) Characterization of the striatal 6‑OHDA model of Parkinson’s disease in wild type and α‑synuclein‑deleted mice. Exp Neurol 210: 182–193.
  • Aron Badin R, Bugi A, Williams S, Vadori M, Michael M, Jan C (2019) MHC matching fails to prevent long‑term rejection of iPSC‑derived neurons in non‑human primates. Nat Comm 10: 4357.
  • Baboo J, Kilbride P, Delahaye M, Milne S, Fonseca F, Blanco M, Meneghel J, Nancekievill A, Gaddum N, Morris GJ (2019) The impact of varying cooling and thawing rates on the quality of cryopreserved human peripheral blood t cells. Sci Rep 9: 3417.
  • Baltimore D, Berg P, Botchan M, Carroll D, Charo RA, Church G, Corn JE, Daley GQ, Doudna JA, Fenner M, Greely HT, Jinek M, Martin GS, Penhoet  E, Puck J, Sternberg SH, Weissman JS, Yamamoto KR (2015) A  prudent path forward for genomic engineering and germline gene modification. Science 348: 36–38.
  • Biernacka JM, Chung SJ, Armasu SM, Anderson KS, Lill CM, Bertram  L, Ahlskog JE, Brighina L, Frigerio R, Maraganore DM (2016) Genome‑wide gene‑environment interaction analysis of pesticide exposure and risk of Parkinson’s disease. Parkinsonism Relat Disord 32: 25–30.
  • Bjarkam CR, Nielsen MS, Glud AN, Rosendal F, Mogensen P, Bender D, Doudet D, Møller A, Sørensen JC (2008) Neuromodulation in a minipig MPTP model of Parkinson disease. British J Neurosurgery 22: S9–S12.
  • Bogetofte H, Jensen P, Ryding M, Schmidt SI, Okarmus J, Ritter L, Worm CS, Hohnholt MC, Azevedo C, Roybon L, Bak LK, Waagepetersen H, Ryan BJ, Wade-Martins R, Larsen MR, Meyer M (2019) PARK(2 mutation causes metabolic disturbances and impaired survival of human iPSC‑derived neurons. Front Cell Neurosci 13: 297.
  • Borgkvist A, Lieberman OJ, Sulzer D (2018) Synaptic plasticity may underlie L‑DOPA induced dyskinesia. Curr Opinion Neurobiol 48: 71–78.
  • Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476: 224–227.
  • Calatayud C, Carola G, Fernández-Carasa I, Valtorta M, Jiménez-Delgado S, Díaz M, Soriano-Fradera J, Cappelletti G, García-Sancho J, Raya Á, Consiglio A (2019) CRISPR/Cas9‑mediated generation of a tyrosine hydroxylase reporter iPSC line for live imaging and isolation of dopaminer‑ gic neurons. Sci Rep 9: 6811.
  • Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP, Loucif AJC, Brown AR, Young G, Mis M, Randall A, Waxman SG, Stanley P, Kirby S, Tarabar S, Gutteridge A, Butt R, McKernan RM, Whiting P, Ali Z, Bilsland J, Stevens EB (2016) Pharmacological reversal of a  pain phenotype in iPSC‑derived sensory neurons and patients with inherited erythromelalgia. Science Translational Medicine 8: 335ra356–335ra356.
  • Carcamo-Orive I, Hoffman GE, Cundiff P, Beckmann ND, Souza SLD, Knowles JW, Patel A, Papatsenko D, Abbasi F, Reaven GM, Whalen S, Lee P, Shahbazi M, Henrion MYR, Zhu K, Wang S, Roussos P, Schadt EE, Pandey G, Chang R, Quertermous T, Lemischka I (2017) Analysis of tran‑ scriptional variability in a large human ipsc library reveals genetic and non‑genetic determinants of heterogeneity. Cell Stem Cell 20: 518–532.
  • Carrera I, Fernandez‑Novoa L, Sampedro C, Cacabelos R (2017) Neuroprotective Effect of atremorine in an experimental model of Parkinson’s disease. Curr Pharm Des 23: 2673–2684.
  • Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA (2009) Nrf2‑mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: Critical role for the astrocyte. Proc Natl Acad Sci U S A 106: 2933–2938.
  • Chinta SJ, Woods G, Demaria M, Rane A, Zou Y, McQuade A, Rajagopalan S, Limbad C, Madden DT, Campisi J, Andersen JK (2018) Cellular Senescence is induced by the environmental neurotoxin paraquat and contributes to neuropathology linked to Parkinson’s disease. Cell Rep 22: 930–940.
  • Christensen AB, Sørensen JCH, Ettrup KS, Orlowski D, Bjarkam CR (2018) Pirouetting pigs: A large non‑primate animal model based on unilateral 6‑hydroxydopamine lesioning of the nigrostriatal pathway. Brain Research Bulletin 139: 167–173.
  • Churko JM, Burridge PW, Wu JC (2013) Generation of human iPSCs from human peripheral blood mononuclear cells using non‑integrative sendai virus in chemically defined conditions. Methods Molecular Biol 1036: 81–88.
  • Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T, Hargus G, Deleidi M, Lawson T, Bogetofte H, Perez-Torres E, Clark L, Moskowitz C, Mazzulli J, Chen L, Volpicelli-Daley L, Romero N, Jiang H, Uitti RJ, Huang Z, Opala G, Scarffe LA, Dawson VL, Klein C, Feng J, Ross OA, Trojanowski JQ, Lee VMY, Marder K, Surmeier DJ, Wszolek ZK, Przedborski S, Krainc D, Dawson TM, Isacson O (2012) Pharmacological rescue of mitochondrial deficits in iP‑ SC‑derived neural cells from patients with familial Parkinson’s disease. Science Translational Medicine 4: 141ra90.
  • Cuervo AM, Stafanis  L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant α‑synuclein by chaperone‑mediated autophagy. Science 305: 1292–1295.
  • Daley GQ, Hyun I, Apperley JF, Barker RA, Benvenisty N, Bredenoord AL, Breuer CK, Caulfield T, Cedars MI, Frey-Vasconcells J, Heslop HE, Jin Y, Lee RT, McCabe C, Munsie M, Murry CE, Piantadosi S, Rao M, Rooke HM, Sipp D, Studer L, Sugarman J, Takahashi M, Zimmerman M, Kimmelman J (2016) Setting global standards for stem cell research and clinical trans‑ lation: The 2016 ISSCR Guidelines. Stem Cell Rep 6: 787–797.
  • de Boni  L, Gasparoni G, Haubenreich C, Tierling S, Schmitt I, Peitz  M, Koch  P, Walter J, Wüllner U, Brüstle O (2018) DNA methylation alterations in iPSC‑ and hESC‑derived neurons: potential implications for neurological disease modeling. Clinical Epigenetics 10: 13.
  • De Sousa PA, Steeg R, Wachter E, Bruce K, King J, Hoeve M, Khadun S, McConnachie G, Holder J, Kurtz A, Seltmann S, Dewender J, Reimann S, Stacey G, O'Shea O, Chapman C, Healy L, Zimmermann H, Bolton B, Rawat T, Atkin I, Veiga A, Kuebler B, Serano BM, Saric T, Hescheler J, Brüstle O, Peitz M, Thiele C, Geijsen N, Holst B, Clausen C, Lako M, Armstrong L, Gupta SK, Kvist AJ, Hicks R, Jonebring A, Brolén  G, Ebneth A, Cabrera-Socorro A, Foerch P, Geraerts M, Stummann TC, Harmon S, George C, Streeter I, Clarke L, Parkinson H, Harrison PW, Faulconbridge  A, Cherubin L, Burdett T, Trigueros C, Patel M, Lucas C, Hardy B, Predan R, Dokler J, Brajnik M, Keminer O, Pless O, Gribbon P, Claussen C, Ringwald A, Kreisel B, Courtney A, Allsopp TE (2017) Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC) ‑ the Hot Start experience. Stem Cell Re‑ search 20: 105–114.
  • Dean DC, 3rd, Sojkova J, Hurley S, Kecskemeti S, Okonkwo O, Bendlin BB, Theisen F, Johnson SC, Alexander AL, Gallagher CL (2016) Alterations of myelin content in Parkinson’s disease: A Cross‑Sectional Neuroimaging Study. PLoS ONE 11: e0163774.
  • DeBoever C, Li H, Jakubosky D, Benaglio P, Reyna J, Olson KM, Huang H, Biggs W, Sandoval E, D'Antonio M, Jepsen K, Matsui H, Arias A, Ren B, Nariai N, Smith EN, D'Antonio-Chronowska A, Farley EK, Frazer KA (2017) Large‑scale profiling reveals the influence of genetic Variation on gene expression in human induced pluripotent stem cells. Cell Stem Cell 20: 533–546.
  • Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep‑brain stimulation for Parkin‑ son’s disease. N Engl J Med 355: 896–908.
  • Devine MJ, Ryten M, Vodicka P, Thomson AJ, Burdon T, Houlden H, Cavaleri  F, Nagano M, Drummond NJ, Taanman JW, Schapira AH, Gwinn K, Hardy J, Lewis PA, Kunath T (2011) Parkinson’s disease induced pluripotent stem cells with triplication of the α‑synuclein locus. Nature Communications 2: 440.
  • di Domenico, Carola G, Calatayud C, Pons-Espinal M, Muñoz JP, Richaud-Patin Y, Fernandez-Carasa I, Gut M, Faella A, Parameswaran J, Soriano J, Ferrer I, Tolosa E, Zorzano A, Cuervo AM, Raya A, Consiglio A (2019) Patient‑Specific iPSC‑Derived Astrocytes Contribute to Non‑Cell‑Autonomous Neurodegeneration in Parkinson’s Disease. Stem cell reports 12: 213–229.
  • Drinkut A, Tereshchenko Y, Schulz JB, Bähr M, Kügler S (2012) Efficient gene therapy for Parkinson’s disease using astrocytes as hosts for localized neurotrophic factor delivery. Mol Ther 20: 534–543.
  • Drozd AM, Walczak MP, Piaskowski S, Stoczynska‑Fidelus E, Rieske P, Grzela DP (2015) Generation of human iPSCs from cells of fibroblastic and epithelial origin by means of the oriP/EBNA‑1 episomal reprogramming system. Stem Cell Res Ther 6: 122.
  • Effenberg A, Stanslowsky N, Klein A, Wesemann  M, Haase A, Martin U, Dengler R, Grothe C, Ratzka A, Wegner F (2015) Striatal transplantation of human dopaminergic neurons differentiated from induced pluripotent stem cells derived from umbilical cord blood using lentiviral repro‑ gramming. Cell Transplantat 24: 2099–2112.
  • Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, Joers V, Swanson C, Holden JE, Zhang SC (2013) Induced pluripotent stem cell‑derived neural cells survive and mature in the nonhuman primate brain. Cell Reports 3: 646–650.
  • Fan Y, Winanto, Ng SY (2020) Replacing what’s lost: a new era of stem cell therapy for Parkinson’s disease. Translat Neurodegenerat 9: 2.
  • Flierl A, Oliveira LM, Falomir-Lockhart LJ, Mak SK, Hesley J, Soldner F, Arndt-Jovin DJ, Jaenisch R, Langston JW, Jovin TM, Schule B (2014) Higher vulnerability and stress sensitivity of neuronal precursor cells carrying an alpha‑synuclein gene triplication. PLoS One 9: e112413.
  • Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ, Eidelberg D, Fahn S (2001) Transplantation of Embryonic Dopamine Neurons for Severe Parkinson’s Dis‑ ease. N Engl J Med 344: 710–719.
  • Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa  M (2009) Efficient induction of transgene‑free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85: 348–362.
  • Gantner CW, de Luzy IR, Kauhausen JA, Moriarty N, Niclis JC, Bye CR, Penna  V, Hunt CPJ, Ermine CM, Pouton CW, Kirik D, Thompson LH, Parish  CL (2020) Viral delivery of GDNF promotes functional integration of human stem cell grafts in Parkinson’s disease. Cell Stem Cell 26: 511–526.
  • Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51: 745–752.
  • Glud AN, Bjarkam CR, Azimi N, Johe K, Sorensen JC, Cunningham M (2016) Feasibility of three‑dimensional placement of human therapeutic stem cells using the intracerebral microinjection instrument. Neuromodulation 19: 708–716.
  • Gore A, Li Z, Fung HL, Young JE, Agarwal S, Antosiewicz-Bourget J, Canto  I, Giorgetti A, Israel MA, Kiskinis E, Lee JH, Loh YH, Manos PD, Montserrat  N, Panopoulos AD, Ruiz S, Wilbert ML, Yu J, Kirkness EF, Belmonte JCI, Rossi DJ, Thomson JA, Eggan K, Daley GQ, Goldstein LSB, Zhang K (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature 471: 63–67.
  • Grow DA, McCarrey JR, Navara CS (2016) Advantages of nonhuman primates as preclinical models for evaluating stem cell‑based therapies for Parkinson’s disease. Stem Cell Research 17: 352–366.
  • Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H (2010) Astrocytic expression of Parkinson’s disease‑related A53T alpha‑synuclein causes neurodegeneration in mice. Mol Brain 3: 12.
  • Habib O, Habib G, Choi HW, Hong KS, Tae Do J, Moon SH, Chung HM (2013) An improved method for the derivation of high quality iPSCs in the absence of c‑Myc. Exp Cell Res 319: 3190–3200.
  • Hallett PJ, Deleidi M, Astradsson A, Smith GA, Cooper O, Osborn TM, Sundberg M, Moore MA, Perez-Torres E, Brownell AL, Schumacher JM, Spealman RD, Isacson O (2015) Successful function of autologous iPSC‑derived dopamine neurons following transplantation in a non‑hu‑man primate model of Parkinson’s disease. Cell Stem Cell 16: 269–274.
  • Hely MA, Reid WGJ, Adena MA, Halliday GM, Morris JGL (2008) The Sydney multicenter study of Parkinson’s disease: The inevitability of dementia at 20 years. Mov Disord 23: 837–844.
  • Holloway RG (2004) Pramipexole vs. levodopa as initial treatment for Parkinson disease: A 4‑year randomized controlled trial. Arch Neurol 61: 1044–1053.
  • Hsieh C‑H, Shaltouki A, Gonzalez AE, Bettencourt da Cruz A, Burbulla LF, St. Lawrence E, Schüle B, Krainc D, Palmer TD, Wang X (2016) Functional Impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell 19: 709–724.
  • Hu BY, Weick JP, Yu J, Ma L‑X, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107: 4335–4340.
  • Huang D, Xu J, Wang J, Tong J, Bai X, Li H, Wang Z, Huang Y, Wu Y, Yu M, Huang F (2017) Dynamic changes in the nigrostriatal pathway in the MPTP mouse model of Parkinson’s disease. Parkinson’s Disease 2017: 9349487.
  • Hussein SM, Batada NN, Vuoristo S, Ching RW, Autio R, Närvä E, Ng S, Sourour M, Hämäläinen R, Olsson C, Lundin K, Mikkola M, Trokovic R, Peitz M, Brüstle O, Bazett-Jones DP, Alitalo K, Lahesmaa R, Nagy A, Otonkoski T (2011) Copy number variation and selection during repro‑ gramming to pluripotency. Nature 471: 58–62.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A Programmable Dual‑RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science 337: 816–821.
  • Johnston TH, Versi E, Howson PA, Ravenscroft P, Fox SH, Hill MP, Reidenberg BE, Corey R, Brotchie JM (2018) DPI‑289, a novel mixed delta opioid agonist / mu opioid antagonist (DAMA), has L‑DOPA‑sparing potential in Parkinson’s disease. Neuropharmacology 131: 116–127.
  • Jowaed A, Schmitt I, Kaut O, Wüllner U (2010) Methylation regulates alpha‑synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30: 6355–6359.
  • Kaji K, Norrby K, Paca A, Mileikovsky  M, Mohseni P, Woltjen K (2009) Virus‑free induction of pluripotency and subsequent excision of repro‑ gramming factors. Nature 458: 771–775.
  • Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386: 896–912.
  • Kelaini S, Vilà-González M, Caines R, Campbell D, Eleftheriadou M, Tsifaki M, Magee C, Cochrane A, O'Neill K, Yang C, Stitt AW, Zeng L, Grieve DJ, Margariti A (2018) Follistatin‑like 3 enhances the function of endothelial cells derived from pluripotent stem cells by facilitating β‑catenin nuclear translocation through inhibition of glycogen synthase kinase‑3β activity. Stem Cells 36: 1033–1044.
  • Kessler C, Atasu B, Hanagasi H, Simón-Sánchez J, Hauser AK, Pak M, Bilgic B, Erginel-Unaltuna N, Gurvit H, Gasser T, Lohmann E (2018) Role of LRRK2 and SNCA in autosomal dominant Parkinson’s disease in Turkey. Parkinsonism Related Disorders 48: 34–39.
  • Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, Mizuma H, Takara S, Takahashi R, Inoue H, Morita S, Yamamoto M, Okita K, Nakagawa M, Parmar M, Takahashi J (2017a) Human iPS cell‑derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 548: 592–596.
  • Kikuchi T, Morizane A, Doi D, Okita K, Nakagawa M, Yamakado H, Inoue H, Takahashi R, Takahashi J (2017b) Idiopathic Parkinson’s disease patient‑derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J Neurosci Res 95: 1829–1837.
  • Kikuchi T, Morizane A, Doi D, Onoe H, Hayashi T, Kawasaki T, Saiki H, Miyamoto S, Takahashi J (2011) Survival of human induced pluripotent stem cell‑derived midbrain dopaminergic neurons in the brain of a primate model of Parkinson’s disease. J Parkinson’s Disease 1: 395–412.
  • Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bensaddek D, Casale FP, Culley OJ, Danecek P, Faulconbridge A, Harrison  PW, Kathuria A, McCarthy D, McCarthy SA, Meleckyte R, Memari Y, Moens N, Soares F, Mann A, Streeter I, Agu CA, Alderton A, Nelson R, Harper S, Patel M, White A, Patel SR, Clarke L, Halai R, Kirton CM, Kolb-Kokocinski A, Beales P, Birney E, Danovi D, Lamond AI, Ouwehand WH, Vallier L, Watt FM, Durbin R, Stegle O, Gaffney DJ (2017) Common genetic variation drives molecular heterogeneity in human iP‑ SCs. Nature 546: 370–375.
  • Kim H, Park HJ, Choi H, Chang Y, Park H, Shin J, Kim J, Lengner CJ, Lee YK, Kim J (2019) Modeling G2019S‑LRRK2 sporadic Parkinson’s disease in 3D midbrain organoids. Stem Cell Rep 12: 518–531.
  • Kin K, Yasuhara T, Kameda M, Date I (2019) Animal models for Parkinson’s disease research: Trends in the 2000s. Int J Mol Sci 20: 5402.
  • Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi  M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608.
  • Kitchens CS, Erkan D, Brando LR, Hahn S, James AH, Kulkarni R, Pericak‑Vance M, Vance J, Ortel TL (2011) Thrombotic storm revisited: Preliminary diagnostic criteria suggested by the thrombotic storm study group. Am J Med 124: 290–296.
  • Kordower JH, Styren S, Clarke  M, Dekosky ST, Olanow CW, Freeman TB (1997) Fetal grafting for Parkinson’s disease: Expression of immune markers in two patients with functional fetal nigral implants. Cell Transplant 6: 213–219.
  • Lang AE, Lozano AM (1998) Parkinson’s Disease. N Engl J Med 339: 1044–1053. Langston JW (2006) The Parkinson’s complex: Parkinsonism is just the tip of the Iceberg. Ann Neurol 59: 591–596.
  • Laperle AH, Sances S, Yucer N, Dardov VJ, Garcia VJ, Ho R, Fulton AN, Jones MR, Roxas KM, Avalos P, West D, Banuelos MG, Shu Z, Murali R, Maidment NT, Van Eyk JE, Tagliati M, Svendsen CN (2020) iPSC modeling of young‑onset Parkinson’s disease reveals a  molecular sig‑ nature of disease and novel therapeutic candidates. Nat Med 26: 289–299.
  • Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, Lynch C, Harness JV, Lee S, Barrero MJ, Ku S, Martynova M, Semechkin R, Galat V, Gottesfeld J, Izpisua Belmonte JC, Murry C, Keirstead HS, Park HS, Schmidt U, Laslett AL, Muller FJ, Nievergelt CM, Shamir R, Loring JF (2011) Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8: 106–118.
  • Lee G, Ramirez CN, Kim H, Zeltner N, Liu B, Radu C, Bhinder B, Kim YJ, Choi IY, Mukherjee-Clavin B, Djaballah H, Studer L (2012) Large‑scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotech 30: 1244–1248.
  • Lewitt PA (2008) Levodopa for the treatment of Parkinson’s disease. N Engl J Med 359: 2468–2476. Li W, Englund E, Widner H, Mattsson B, Van Westen D, Lätt J, Rehncrona S, Brundin P, Björklund A, Lindvall O, Li JY (2016) Extensive graft‑derived dopaminergic innervation is maintained 24 years after transplantation in the degenerating parkinsonian brain. Proc Natl Acad Sci USA 113: 6544–6549.
  • Lillethorup TP, Glud AN, Alstrup AKO, Mikkelsen TW, Nielsen EH, Zaer H, Doudet DJ, Brooks DJ, Sørensen JCH, Orlowski D, Landau AM (2018a) Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Exp Neurol 303: 142–152.
  • Lillethorup TP, Glud AN, Alstrup AKO, Noer O, Nielsen EHT, Schacht AC, Landeck N, Kirik D, Orlowski D, Sorensen JCH, Doudet DJ, Landau AM (2018b) Longitudinal monoaminergic PET imaging of chronic proteasome inhibition in minipigs. Sci Rep 8: 15715.
  • Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders K, Sawle G, Rothwell J, Marsden C (1990) Grafts of fetal dopamine neurons survive and improve motor function in Parkinson’s disease. Science 247: 574–577.
  • Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner  H, Lindholm T, Björklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden D, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger A, Bygdeman M, Strömberg I, Olson L (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease: A detailed account of methodology and a 6‑month follow‑up. Arch Neurol 46: 615–631.
  • Liu X, Li F, Stubblefield EA, Blanchard B, Richards TL, Larson GA, He Y, Huang Q, Tan AC, Zhang D, Benke TA, Sladek JR, Zahniser NR, Li CY (2012) Direct reprogramming of human fibroblasts into dopaminergic neuron‑like cells. Cell Research 22: 321–332.
  • Loring JF (2018) Autologous induced pluripotent stem cell‑derived neurons to treat Parkinson’s disease. Stem Cells Dev 27: 958–959.
  • Ludtmann MHR, Angelova PR, Horrocks MH, Choi ML, Rodrigues M, Baev  AY, Berezhnov AV, Yao Z, Little D, Banushi B, Al-Menhali AS, Ranasinghe RT, Whiten DR, Yapom R, Dolt KS, Devine MJ, Gissen P, Kunath T, Jaganjac M, Pavlov EV, Klenerman D, Abramov AY, Gandhi S (2018) α‑synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat Comm 9: 2293.
  • Ludtmann MHR, Angelova PR, Ninkina NN, Gandhi S, Buchman VL, Abramov AY (2016) Monomeric alpha‑synuclein exerts a physiological role on brain ATP synthase. J Neurosci 36: 10510–10521.
  • Lyczek A, Arnold A, Zhang J, Campanelli JT, Janowski  M, Bulte JWM, Walczak P (2017) Transplanted human glial‑restricted progenitors can rescue the survival of dysmyelinated mice independent of the production of mature, compact myelin. Exp Neurol 291: 74–86.
  • Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon  T, Fujihara M, Akimaru H, Sakai N, Shibata Y, Terada M, Nomiya Y, Tanishima S, Nakamura M, Kamao H, Sugita S, Onishi A, Ito T, Fujita K, Kawamata S, Go MJ, Shinohara C, Hata K, Sawada M, Yamamoto M, Ohta S, Ohara Y, Yoshida K, Kuwahara J, Kitano Y, Amano N, Umekage M, Kitaoka F, Tanaka A, Okada C, Takasu N, Ogawa S, Yamanaka S, Takahashi M (2017) Autologous induced stem‑cell‑derived retinal cells for macular degeneration. N Engl J Med 376: 1038–1046.
  • Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E, Blin J, Mournetas V, Massouridès E, Sohier TJM, Corbin A, Aubé F, Teixeira M, Pinset C, Schaeffer L, Legube G, Cosset FL, Verhoeyen E, Ohlmann T, Ricci EP (2019) Genome editing in primary cells and in vivo using viral‑derived Nanoblades loaded with Cas9‑sgRNA ribonucleoproteins. Nat Commu‑ nications 10: 45.
  • Matsuda T, Irie T, Katsurabayashi S, Hayashi Y, Nagai T, Hamazaki N, Adefuin AMD, Miura F, Ito T, Kimura H, Shirahige K, Takeda T, Iwasaki K, Imamura T, Nakashima K (2019) Pioneer Factor NeuroD1 Rearranges Transcriptional and Epigenetic Profiles to Execute Microglia‑Neuron Conversion. Neuron 101: 472–485.
  • Miller JD, Ganat YM, Kishinevsky S, Bowman RL, Liu B, Tu EY, Mandal PK, Vera E, Shim JW, Kriks S, Taldone T, Fusaki N, Tomishima MJ, Krainc D, Milner TA, Rossi DJ, Studer L (2013) Human iPSC‑based modeling of late‑onset disease via progerin‑induced aging. Cell Stem Cell 13: 691–705.
  • Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, Saito T, Nishimura J, Takemasa I, Mizushima T, Ikeda M, Yamamoto H, Sekimoto M, Doki Y, Mori M (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8: 633–638.
  • Morgani SM, Metzger JJ, Nichols J, Siggia ED, Hadjantonakis AK (2018) Micropattern differentiation of mouse pluripotent stem cells recapitu‑ lates embryo regionalized cell fate patterning. eLife 7: e32839.
  • Morizane A, Kikuchi T, Hayashi T, Mizuma H, Takara S, Doi H, Mawatari A, Glasser MF, Shiina T, Ishigaki H, Itoh Y, Okita K, Yamasaki E, Doi D, Onoe H, Ogasawara K, Yamanaka S, Takahashi J (2017) MHC matching improves engraftment of iPSC‑derived neurons in non‑human primates. Nat Comm 8: 385.
  • Nakagawa M, Taniguchi Y, Senda S, Takizawa N, Ichisaka T, Asano K, Morizane A, Doi D, Takahashi J, Nishizawa M, Yoshida Y, Toyoda T, Osafune K, Sekiguchi K, Yamanaka S (2014) A novel efficient feeder‑free culture system for the derivation of human induced pluripotent stem cells. 4: 3594.
  • Nakano KK, Tyler HR (1971) A double-blind study of the effects of levodopa in Parkinson’s disease. Neurology 21: 1069–1074.
  • Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schüle B, Dolmetsch RE, Langston W, Palmer TD, Pera RR (2011) LRRK2 Mutant iPSC‑Derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8: 267–280.
  • Nielsen MS, Glud AN, Møller A, Mogensen P, Bender D, Sørensen JC, Doudet D, Bjarkam CR (2016) Continuous MPTP intoxication in the göttingen minipig results in chronic parkinsonian deficits. Acta Neurobiol Exp 76: 199–211.
  • Nolbrant S, Heuer A, Parmar M, Kirkeby A (2017) Generation of high‑purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nature Protocols 12: 1962–1979.
  • Okumura T, Horie Y, Lai CY, Lin HT, Shoda H, Natsumoto B, Fujio K, Kumaki E, Okano T, Ono S, Tanita K, Morio T, Kanegane H, Hasegawa H, Mizoguchi F, Kawahata K, Kohsaka H, Moritake H, Nunoi H, Waki H, Tamaru S-I, Sasako T, Yamauchi T, Kadowaki T, Tanaka H, Kitanaka S, Nishimura K, Ohtaka M, Nakanishi M, Otsu M (2019) Robust and highly efficient hiPSC generation from patient non‑mobilized peripheral blood‑derived CD34+ cells using the auto‑erasable Sendai virus vector. Stem Cell Res Ther 10: 185.
  • Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, Shannon KM, Nauert GM, Perl DP, Godbold J, Freeman TB (2003) A double‑blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol 54: 403–414.
  • Paquet D, Kwart D, Chen A, Sproul A, Jacob S, Teo S, Olsen KM, Gregg A, Noggle S, Tessier‑Lavigne M (2016) Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533: 125–129.
  • Parmar M (2018) Towards stem cell based therapies for Parkinson’s disease. Development 145: 156117. Parmar M, Grealish S, Henchcliffe C (2020) The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 21: 103–115.
  • Pfeiffer HCV, Løkkegaard A, Zoetmulder  M, Friberg  L, Werdelin  L (2014) Cognitive impairment in early‑stage non‑demented Parkinson’s disease patients. Acta Neurol Scand 129: 307–318.
  • Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Björklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci 108: 10343.
  • Plummer S, Wallace S, Ball G, Lloyd R, Schiapparelli P, Quiñones‑Hinojosa A, Hartung T, Pamies D (2019) A Human iPSC‑derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Sci Rep 9: 1407.
  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, Natesan S, Wagers AJ, Melnick A, Evans T, Hochedlinger K (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28: 848–855.
  • Rane A, Rajagopalan S, Ahuja M, Thomas B, Chinta SJ, Andersen JK (2018) Hsp90 Co‑chaperone p(23 contributes to dopaminergic mitochondrial stress via stabilization of PHD2: Implications for Parkinson’s disease. NeuroToxicol 65: 166–173.
  • Recasens A, Dehay B, Bové J, Carballo-Carbajal I, Dovero S, Pérez-Villalba A, Fernagut PO, Blesa J, Parent A, Perier C, Fariñas I, Obeso JA, Bezard E, Vila M (2014) Lewy body extracts from Parkinson disease brains trigger α‑synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75: 351–362.
  • Reinhardt P, Schmid B, Burbulla LF, Schondorf DC, Wagner L, Glatza M, Hoing S, Hargus G, Heck SA, Dhingra A, Wu G, Muller S, Brockmann K, Kluba T, Maisel M, Kruger R, Berg D, Tsytsyura Y, Thiel CS, Psathaki OE, Klingauf J, Kuhlmann T, Klewin M, Muller H, Gasser T, Scholer HR, Sterneckert J (2013) Genetic correction of a LRRK(2 mutation in human iPSCs links parkinsonian neurodegeneration to ERK‑dependent changes in gene expression. Cell Stem Cell 12: 354–367.
  • Romero A, Parada E, González‑Lafuente  L, Farré‑Alins  V, Ramos E, Cacabelos  R, Egea J (2017) Neuroprotective effects of E‑PodoFavalin‑15999 (Atremorine®). CNS Neurosci Ther 23: 450–452.
  • Ryan S D, Dolatabadi N, Chan S F, Zhang X, Akhtar MW, Parker J, Ambasudhan R, Lipton SA (2013) Isogenic human iPSC Parkinson’s model shows nitrosative stress‑induced dysfunction in MEF2‑PGC1α transcription. Cell 155: 1351–1364.
  • Saenger VM, Kahan J, Foltynie T, Friston K, Aziz TZ, Green AL, Van Hartevelt TJ, Cabral J, Stevner ABA, Fernandes HM, Mancini L, Thornton J, Yousry T, Limousin P, Zrinzo L, Hariz M, Marques P, Sousa N, Kringelbach ML, Deco G (2017) Uncovering the underlying mechanisms and whole‑brain dynamics of deep brain stimulation for Parkinson’s disease. Sci Rep 7: 9882.
  • Schaefer KA, Wu W‑H, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB (2017) Unexpected mutations after CRISPR‑Cas9 editing in vivo. Nat Meth 14: 547–548.
  • Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ (2018) Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α‑synuclein in neurons. Neurobiol Dis‑ ease 111: 26–35.
  • Scudamore O, Ciossek T (2018) Increased Oxidative Stress Exacerbates alpha‑Synuclein Aggregation In Vivo. J Neuropathol Exp Neurol 77: 443–453.
  • Scudellari M (2016) How iPS cells changed the world. Nature 534: 310–312.
  • Seo J, Lee Y, Kim BS, Park J, Yang S, Yoon HJ, Yoo J, Park HS, Hong JJ, Koo BS, Baek SH, Jeon CY, Huh JW, Kim YH, Park SJ, Won J, Ahn YJ, Kim K, Jeong KJ, Kang P, Lee DS, Lim SM, Jin YB, Lee SR (2019) A non‑human primate model for stable chronic Parkinson’s disease induced by MPTP administration based on individual behavioral quantification. J Neurosci Meth 311: 277–287.
  • Shiba Y, Gomibuchi T, Seto T, Wada Y, Ichimura H, Tanaka Y, Ogasawara T, Okada K, Shiba N, Sakamoto K, Ido D, Shiina T, Ohkura M, Nakai J, Uno N, Kazuki Y, Oshimura M, Minami I, Ikeda U (2016) Allogeneic transplantation of iPS cell‑derived cardiomyocytes regenerates primate hearts. Nature 538: 388–391.
  • Shirotani K, Matsuo K, Ohtsuki S, Masuda T, Asai M, Kutoku Y, Ohsawa Y, Sunada Y, Kondo T, Inoue H, Iwata N (2017) A simplified and sensitive method to identify Alzheimer’s disease biomarker candidates using patient‑derived induced pluripotent stem cells (iPSCs). J Biochem 162: 391–394.
  • Sidransky E, Lopez G (2012) The link between the GBA gene and parkinsonism. Lancet Neurol 11: 986–998.
  • Simón‑Sánchez J, Schulte C, Bras JM, Sharma  M, Gibbs JR, Berg D, Paisan‑Ruiz  C, Lichtner P, Scholz SW, Hernandez DG, Krüger R, Federoff  M, Klein C, Goate A, Perlmutter J, Bonin  M, Nalls MA, Illig T, Gieger C, Houlden H, Steffens M, Okun MS, Racette BA, Cookson MR, Foote KD, Fernandez HH, Traynor BJ, Schreiber S, Arepalli S, Zonozi R, Gwinn K, van der Brug  M, Lopez G, Chanock SJ, Schatzkin A, Park Y, Hollenbeck A, Gao J, Huang X, Wood NW, Lorenz D, Deuschl G, Chen H, Riess O, Hardy JA, Singleton AB, Gasser T (2009) Genome‑wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41: 1308–1312.
  • Soldner F, Laganière J, Cheng AW, Hockemeyer D, Gao Q, Alagappan R, Khurana V, Golbe LI, Myers RH, Lindquist S, Zhang L, Guschin D, Fong LK, Vu BJ, Meng X, Urnov FD, Rebar EJ, Gregory PD, Zhang HS, Jaenisch R (2011) Generation of isogenic pluripotent stem cells differing exclusively at two early onset Parkinson point mutations. Cell 146: 318–331.
  • Sommer A, Maxreiter F, Krach F, Fadler T, Grosch J, Maroni  M, Graef D, Eberhardt E, Riemenschneider MJ, Yeo GW (2018) Th17 lymphocytes induce neuronal cell death in a human iPSC‑based model of Parkinson’s disease. Cell Stem Cell 23: 123–131.
  • Spillantini MG, Crowther RA, Jakes R, Hasegawa  M, Goedert  M (1998) α‑synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473.
  • Stanslowsky N, Haase A, Martin U, Naujock  M, Leffler A, Dengler R, Wegner  F (2014) Functional differentiation of midbrain neurons from human cord blood‑derived induced pluripotent stem cells. Stem Cell Res Ther 5: 35.
  • Tagliafierro L, Zamora ME, Chiba‑Falek O (2019) Multiplication of the SNCA locus exacerbates neuronal nuclear aging. Hum Mol Genet 28: 407–421.
  • Takahashi J (2019) Preparing for first human trial of induced pluripotent stem cell‑derived cells for Parkinson’s disease: an interview with Jun Takahashi. Regen Med 14: 93–95.
  • Takahashi K, Tanabe K, Ohnuki  M, Narita  M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult hu‑ man fibroblasts by defined factors. Cell 131: 861–872.
  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126: 663–676.
  • Tarnawski L, Eugster E, DeCamp L, Jovinge S (2019) The efficacy and safety of sendai viral reprograming of mouse primary cells using human vectors. Cell Reprogram 21: 78–88.
  • Tashiro K, Kawabata K, Inamura M, Takayama K, Furukawa N, Sakurai F, Katayama K, Hayakawa T, Furue MK, Mizuguchi H (2010) Adenovirus vector‑mediated efficient transduction into human embryonic and induced pluripotent stem cells. Cell Reprogram 12: 501–507.
  • The  Hd  iPsc  Consortium (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG‑repeat‑expansion‑associat‑ ed phenotypes. Cell Stem Cell 11: 264–278.
  • Thomas B, Mandir AS, West N, Liu Y, Andrabi SA, Stirling W, Dawson VL, Dawson TM, Lee MK (2011) Resistance to MPTP‑neurotoxicity in α‑synu‑ clein knockout mice is complemented by human α‑synuclein and associ‑ ated with increased β‑synuclein and Akt activation. PLoS One 6: e16706.
  • Trilck M, Hübner R, Frech MJ (2016) Generation and neuronal differentiation of patient‑specific induced pluripotent stem cells derived from niemann‑pick type C1 fibroblasts. Methods Mol Biol 1353: 233–259.
  • Van Kampen JM, Baranowski DB, Shaw CA, Kay DG (2014) Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp Gerontol 50: 95–105.
  • Van Kampen JM, Baranowski DC, Robertson HA, Shaw CA, Kay DG, Lewis P (2015) The progressive BSSG rat model of Parkinson’s: Recapitulating multiple key features of the human disease. PLoS One 10: e0139694.
  • Vermilyea SC, Guthrie S, Meyer  M, Smuga‑Otto K, Braun K, Howden S, Thomson JA, Zhang SC, Emborg ME, Golos TG (2017) Induced pluripotent stem cell‑derived dopaminergic neurons from adult common mar‑ moset fibroblasts. Stem Cells Develop 26: 1225–1235.
  • Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig  M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463: 1035–1041.
  • Vila  M, Jackson‑Lewis  V, Vukosavic S, Djaldetti R, Liberatore G, Offen D, Korsmeyer SJ, Przedborski S (2001) Bax ablation prevents dopaminergic neurodegeneration in the 1‑methyl‑4‑phenyl‑1,2,3,6‑tetrahydropyr‑ idine mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 98: 2837–2842.
  • Wakabayashi K, Hayashi S, Yoshimoto M, Kudo H, Takahashi H (2000) NACP/ alpha‑synuclein‑positive filamentous inclusions in astrocytes and oligo‑ dendrocytes of Parkinson’s disease brains. Acta Neuropathol 99: 14–20.
  • Wang S, Bates J, Li X, Schanz S, Chandler‑Militello D, Levine C, Maherali N, Studer  L, Hochedlinger K, Windrem  M, Goldman SA (2013) Human iPSC‑derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12: 252–264.
  • Wang S, Zou C, Fu L, Wang B, An J, Song G, Wu J, Tang X, Li M, Zhang J, Yue F, Zheng C, Chan P, Zhang YA, Chen Z (2015) Autologous iPSC‑derived dopamine neuron transplantation in a nonhuman primate Parkinson’s dis‑ ease model. Cell Discovery 1: 15012.
  • Wenning GK, Odin P, Morrish P, Rehncrona S, Widner H, Brundin P (1997) Short‑ and long‑term survival and function of unilateral intrastriatal dopaminergic grafts in Parkinson’s disease. Ann Neurol 42: 95–107.
  • Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, Broadfoot J, Cronin D, Schroers C, Barua NU, Longpre L, Barclay CL, Boiko C, Johnson  GA, Fibiger HC, Harrison R, Lewis O, Pritchard G, Howell M, Irving C, Johnson D, Kinch S, Marshall C, Lawrence AD, Blinder S, Sossi V, Stoessl AJ, Skinner P, Mohr E, Gill SS (2019) Extended treatment with glial cell line‑derived neurotrophic factor in Parkinson’s disease. J Parkinsons Dis 9: 301–313.
  • Wilson JMB, Khabazian I, Wong MC, Seyedalikhani A, Bains JS, Pasqualotto BA, Williams DE, Andersen RJ, Simpson RJ, Smith R, Craig UK, Kurland LT, Shaw CA (2002) Behavioral and neurological correlates of ALS‑parkinsonism dementia complex in adult mice fed washed cycad flour. Neuro Molr Med 1: 207–221.
  • Windrem MS, Nunes MC, Rashbaum WK, Schwartz TH, Goodman RA, McKhann G 2nd, Roy NS, Goldman SA (2004) Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmy‑ elinated brain. Nat Med 10: 93–97.
  • Windrem MS, Schanz SJ, Guo M, Tian GF, Washco V, Stanwood N, Rasband M, Roy NS, Nedergaard M, Havton LA, Wang S, Goldman SA (2008) Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell 2: 553–565.
  • Yamashita T, Kawai H, Tian F, Ohta Y, Abe K (2011) Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain. Cell Transplant 20: 883–891.
  • Yoo HS, Chung SJ, Chung SJ, Moon H, Oh JS, Kim JS, Hong JY, Ye BS, Sohn YH, Lee PH (2018) Presynaptic dopamine depletion determines the timing of levodopa‑induced dyskinesia onset in Parkinson’s disease. Eur J Nucl Med Mol I 45: 423–431.
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: 1917–1920.
  • Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordonez A, Hannan NR, Rouhani FJ, Darche S, Alexander G, Marciniak SJ, Fusaki N, Hasegawa M, Holmes MC, Di Santo JP, Lomas DA, Bradley A, Vallier L (2011) Targeted gene correction of alpha1‑antitrypsin deficiency in induced pluripotent stem cells. Nature 478: 391–394.
  • Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ, Zhang YJ, Ding JQ, Chen SD (2011) CD200‑CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a  rat model of Parkinson’s disease. J Neuroinflammat 8: 154.
  • Zhao Y, Rafatian N, Feric NT, Cox BJ, Aschar-Sobbi R, Wang EY, Aggarwal P, Zhang B, Conant G, Ronaldson-Bouchard K, Pahnke A, Protze S, Lee JH, Davenport Huyer L, Jekic D, Wickeler A, Naguib HE, Keller GM, Vunjak-Novakovic G, Broeckel U, Backx PH, Radisic M (2019) A platform for generation of chamber‑specific cardiac tissues and disease modeling. Cell 176: 913–927.
  • Zhou H, Martinez H, Sun B, Li A, Zimmer M, Katsanis N, Davis EE, Kurtzberg J, Lipnick S, Noggle S, Rao M, Chang S (2015) Rapid and efficient generation of transgene‑free iPSC from a  small volume of cryopreserved blood. Stem Cell Rev Rep 11: 652–665.
  • Zhu L, Sun C, Ren J, Wang G, Ma R, Sun L, Yang D, Gao S, Ning K, Wang Z, Chen X, Chen S, Zhu H, Gao Z, Xu J (2019) Stress‑induced precocious aging in PD‑patient iPSC‑derived NSCs may underlie the pathophysiology of Parkinson’s disease. Cell Death Disease 10: 105.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-19c3c1b3-627c-4246-b81b-2733d3a2ebc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.