PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | 28 | 2 |

Tytuł artykułu

Effect of dietary organic selenium (Se) on immune response, hepatic antioxidant status, selenoprotein gene expression and meat oxidative stability in lambs

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of the study was to examine the effects of different doses of dietary organic selenium (Se) on humoral immune response, hepatic antioxidant status, mRNA expression of key selenoproteins and oxidative stability of lamb meat. Twenty lambs aging 5–6 months received during a 90-day period a basal diet unsupplemented or supplemented with 0.5, 1.5 or 4.5 ppm Se (selenized yeasts). After experimental period, immune response against Peste des petits ruminants (PPR) virus vaccine, hepatic antioxidant status, selenoproteins gene expression, histology of liver, kidney, spleen and thymus, and meat oxidative stability after 0, 3, 7 and 10 days of storage were studied. Significantly higher serum PPR antibody titre and hepatic total antioxidant capacity in lambs fed diet supplemented with 1.5 and 4.5 ppm Se were shown. Gene expression of glutathione peroxidase 1 (GPX1) and GPX3 was increased in group with 0.5 ppm Se supplementation. While selenoprotein 15 and iodothyronine deiodinase 1 (DIO1) mRNA levels were not influenced by supranutritional Se supplementation, DIO3 mRNA level was upregulated at 4.5 ppm Se addition. Selenoprotein P and W1 gene expression were significantly upregulated by 1.5 and 4.5 ppm Se supplementation, respectively. Thioredoxin reductase 1 gene expression was decreased by 4.5 ppm Se. No appreciable differences in meat lipid oxidation were observed amongst treatments. So, feeding 1.5 ppm organic Se could be beneficial in improving humoral immune response to PPR vaccine and hepatic antioxidant status in lambs. Further, the expression of genes encoding selenoproteinases depends on their type and dose of Se in the diet. The studied Se doses did not induce toxicity in organs but exhibited limited potential to enhance meat oxidative stability

Słowa kluczowe

Wydawca

-

Rocznik

Tom

28

Numer

2

Opis fizyczny

p.138-148,fig.,ref.

Twórcy

  • ICAR-National Institute of Animal Nutrition and Physiology, Indian Council of Agricultural Research, Adugodi, Bangalore, Karnataka 560030, India
autor
  • ICAR-National Institute of Animal Nutrition and Physiology, Indian Council of Agricultural Research, Adugodi, Bangalore, Karnataka 560030, India
autor
  • ICAR-National Institute of Animal Nutrition and Physiology, Indian Council of Agricultural Research, Adugodi, Bangalore, Karnataka 560030, India
autor
  • ICAR-National Institute of Animal Nutrition and Physiology, Indian Council of Agricultural Research, Adugodi, Bangalore, Karnataka 560030, India
  • ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Indian Council of Agricultural Research, Bangalore, Karnataka 560 064, India
autor
  • ICAR-National Institute of Animal Nutrition and Physiology, Indian Council of Agricultural Research, Adugodi, Bangalore, Karnataka 560030, India
  • ICAR-National Institute of Animal Nutrition and Physiology, Indian Council of Agricultural Research, Adugodi, Bangalore, Karnataka 560030, India

Bibliografia

  • Arthur J.R., Nicol F., Beckett G.J., 1990. Hepatic iodothyronine 5’-deiodinase. The role of selenium. Biochem. J. 272, 537–540, https://doi.org/10.1042/bj2720537
  • Bancroft J.D., Stevens A. (Editors), 1996. Theory and Practice of Histological Techniques. 4th Edition.Churchill Livingstone. London (UK)
  • Benzie I.F.F., Strain J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76, https://doi.org/10.1006/abio.1996.0292
  • Birthal P.S., 2002. Technological change in India’s livestock subsector: evidence and issues. In: P.S. Birthal and P. Parthasarathy Rao (Editors). Technology Options for Sustainable Livestock Production in India. National Centre for Agricultural Economics and Policy Research, New Delhi (India), International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh (India) and International Livestock Research Institute, Addis Ababa (Ethiopia), pp. 20–40
  • Chen G., Wu J., Li C., 2014. Effect of different selenium sources on production performance and biochemical parameters of broilers. J. Anim. Physiol. Anim. Nutr. 98, 747–754, https://doi.org/10.1111/jpn.12136
  • Cristaldi L.A., McDowell L.R., Buergelt C.D., Davis P.A., Wilkinson N.S., Martin F.G., 2005. Tolerance of inorganic selenium in wether sheep. Small Rumin. Res. 56, 205–213, https://doi.org/10.1016/j.smallrumres.2004.06.001
  • Czauderna M., Ruszczyńska A., Bulska A., Krajewska K.A., 2018. Seleno-compounds and carnosic acid added to diets with rapeseed and fish oils affect concentrations of selected elements and chemical composition in the liver, heart and muscles of lambs. Biol. Trace Elem. Res. 184, 378–390, https://doi.org/10.1007/s12011-017-1211-z
  • Davis P.A., McDowell L.R., Wilkinson N.S., Buergelt C.D., Van Alstyne R., Weldon R.N., Marshall T.T., Matsuda-Fugisaki E.Y., 2008. Comparative effects of various dietary levels of Se as sodium selenite or Se yeast on blood, wool, and tissue Se concentrations of wether sheep. Small Ruminant Res. 74, 149–158, https://doi.org/10.1016/j.smallrumres.2007.05.003
  • Elgendy R., Giantin M., Castellani F., Grotta L., Palazzo F., Dacasto M., Martino G., 2016. Transcriptomic signature of high dietary organic selenium supplementation in sheep: A nutrigenomic insight using a custom microarray platform and gene set enrichment analysis. J. Anim. Sci. 94, 3169–3184, https://doi.org/10.2527/jas.2016-0363
  • Fagan S., Owens R., Ward P., Connolly C., Doyle S., Murphy R., 2015. Biochemical comparison of commercial selenium yeast preparations. Biol. Trace Elem. Res. 166, 245–259, https://doi.org/10.1007/s12011-015-0242-6
  • Fairweather-Tait S.J., Bao Y., Broadley M.R., Collings R., Ford D., Hesketh J.E., Hurst R., 2011. Selenium in human health and disease. Antioxid. Redox Signal. 14, 1337–1383, https://doi.org/10.1089/ars.2010.3275
  • Fakri F., Ghzal F., Daouam S., Elarkam A., Douieb L., Zouheir Y., Tadlaoui K., Fassi-Fihri O., 2015. Development and field application of a new combined vaccine against Peste des Petits Ruminants and Sheep Pox. Trials Vaccinol. 4, 33–37, https://doi.org/10.1016/j.trivac.2015.03.004
  • Fallah A.A., Saei-Dehkordi S.S., Nematollahi A., Jafari T., 2011. Comparative study of heavy metal and trace element accumulation in edible tissues of farmed and wild rainbow trout (Oncorhynchus mykiss) using ICP-OES technique. Microchem. J. 98, 275–279, https://doi.org/10.1016/j.microc.2011.02.007
  • FDA (Food and Drug Administration), 2018. Code of Federal Regulations Title 21 – Food and Drugs; Chapter 1 – Food and Drug Administration, Department of Health and Human Services; Subchapter E – Animal drugs, feeds, and related products; Part 573 – Food additives permitted in feed and drinking water of animals; Subpart B – Food Additive Listing; Section 573.920 – Selenium (21CFR573.920), https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=573.920
  • FEEDAP (EFSA Panel on Additives and Products or Substances used in Animal Feed), 2011. Scientific opinion on safety and efficacy of Sel-Plex® (organic form of selenium produced by Saccharomyces cerevisiae CNCM I-3600) for all species. EFSA J. 9, 2110, https://doi.org/10.2903/j.efsa.2011.2110
  • Gladyshev V.N., Arnér E.S., Berry M.J. et al., 2016. Selenoprotein gene nomenclature. J. Biol. Chem. 291, 24036–24040, https://doi.org/10.1074/jbc.M116.756155
  • Gordon M.H., 2001. The development of oxidative rancidity. In: J. Pokorny, N. Yanishlieva, M.H. Gordon (Editors). Antioxidants in Food: Practical Applications.Woodhead Publishing Limited. Cambridge (UK), pp. 7–21, https://doi.org/10.1016/9781855736160.1.5
  • Hall J.A., Harwell A.M., Van Saun R.J., Vorachek W.R., Stewart W.C., Galbraith M.L., Hooper K.J., Hunter J.K., Mosher W.D., Pirelli G.J., 2011. Agronomic biofortification with selenium: Effects on whole blood selenium and humoral immunity in beef cattle. Anim. Feed Sci. Technol. 164, 184–190, https://doi.org/10.1016/j.anifeedsci.2011.01.009
  • Hall J.A., Vorachek W.R., Stewart W.C., Gorman M.E., Mosher W.D., Pirelli G.J., Bobe G., 2013. Selenium supplementation restores innate and humoral immune responses in footrot-affected sheep. PLoS ONE 8, e82572, https://doi.org/10.1371/journal.pone.0082572
  • Han X., Wei Y., Wang H., Wang F., Ju Z., Li T., 2018. Nonsense-mediated mRNA decay: a ‘nonsense’ pathway makes sense in stem cell biology. Nucleic Acids Res. 46, 1038–1051, https://doi.org/10.1093/nar/gkx1272
  • Haug A., Graham R.D., Christophersen O.A., Lyons G.H., 2007. How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb. Ecol. Health Dis. 19, 209–228, https://doi.org/10.1080/08910600701698986
  • Hooper K.J., Bobe G., Vorachek W.R., Bishop-Stewart J.K., Mosher W.D., Pirelli G.J., Kent M.L., Hall J.A., 2014. Effect of selenium yeast supplementation on naturally acquired parasitic infection in ewes. Biol. Trace Elem. Res. 161, 308–317, https://doi.org/10.1007/s12011-014-0134-1
  • Hu Y., McIntosh G.H., Le Leu R.K., Young G.P., 2010. Selenium-enriched milk proteins and selenium yeast affect selenoprotein activity and expression differently in mouse colon. Br. J. Nutr. 104, 17–23, https://doi.org/10.1017/S0007114510000309
  • Hugejiletu H., Bobe G., Vorachek W.R., Gorman M.E., Mosher W.D., Pirelli G.J., Hall J.A., 2013. Selenium supplementation alters gene expression profiles associated with innate immunity in whole-blood neutrophils of sheep. Biol. Trace Elem. Res. 154, 28–44, https://doi.org/10.1007/s12011-013-9716-6
  • ICAR-NIANP (Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology), 2013. Nutrient Requirements of Animals – Sheep, Goat and Rabbit. ICARNIANP, New Delhi (India)
  • Jones B.A., Rich K.M., Mariner J.C., Anderson J., Jeggo M., Thevasagayam S., Cai Y., Peters A.R., Roeder P., 2016. The economic impact of eradicating peste des petits ruminants: a benefit-cost analysis. PLoS ONE 11, e0149982, https://doi.org/10.1371/journal.pone.0149982
  • Juniper D.T., Phipps R.H., Givens D.I., Jones A.K., Green C., Bertin G., 2008. Tolerance of ruminant animals to high dose in-feed administration of a selenium-enriched yeast. J. Anim. Sci. 86, 197–204, https://doi.org/10.2527/jas.2006-773
  • Juszczuk-Kubiak E., Bujko K., Cymer M., Wicińska K., Gabryszuk M., Pierzchała M., 2016. Effect of inorganic dietary selenium supplementation on selenoprotein and lipid metabolism gene expression patterns in liver and loin muscle of growing lambs. Biol. Trace Elem. Res. 172, 336–345, https://doi.org/10.1007/s12011-015-0592-0
  • Kieliszek M., Błażejak S., 2016. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21, 609, https://doi.org/10.3390/molecules21050609
  • Labunsky V.M., Hatfield D.L., Gladyshev V.N., 2014. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777, https://doi.org/10.1152/physrev.00039.2013
  • Livak K.J., Schmittgen T.D., 2001. Analysis of relative gene expression data using Real-Time Quantitative PCR and the method. Methods 25, 402–408, https://doi.org/10.1006/meth.2001.1262
  • Luciano G., Vasta V., Monahan F.J., López-Andrés P., Biondi L., LanzaM., PrioloA., 2011. Antioxidant status, colour stability and myoglobin resistance to oxidation of longissimus dorsi muscle from lambs fed a tannin-containing diet. Food Chem. 124, 1036–1042, https://doi.org/10.1016/j.foodchem.2010.07.070
  • Mariotti M., Ridge P.G., Zhang Y., Lobanov A.V., Pringle T.H., Guigo R., Hatfield D.L., Gladyshev V.N., 2012. Composition and evolution of the vertebrate and mammalian selenoproteomes. PLoS ONE 7, e33066, https://doi.org/10.1371/journal.pone.0033066
  • Matthews J.C., Zhang Z., Patterson J.D., Bridges P.J., Stromberg A.J., Boling J.A., 2014. Hepatic transcriptome profiles differ among maturing beef heifers supplemented with inorganic, organic, or mixed (50% inorganic:50% organic) forms of dietary selenium. Biol. Trace Elem. Res. 160, 321–339, https://doi.org/10.1007/s12011-014-0050-4
  • Mehdi Y., Dufrasne I., 2016. Selenium in cattle: A review. Molecules 21, 545, https://doi.org/10.3390/molecules21040545
  • Mehdi Y., Hornick J.-L, Istasse L., Dufrasne I., 2013. Selenium in the environment, metabolism and involvement in body functions. Molecules 18, 3292–3311, https://doi.org/10.3390/molecules18033292
  • NRC (National Research Council), 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press. Washington, DC (USA), https://doi.org/10.17226/11654
  • OIE-FAO (World Organisation for Animal Health-Food and Agriculture Organization of United Nations), 2015. Global Strategy for the Control and Eradication of PPR. OIE (Paris, France) and FAO (Rome, Italy)
  • Oliveira T.F.B., Rivera D.F.R., Mesquita F.R., Braga H., Ramos E.M., Bertechini A.G., 2014. Effect of different sources and levels of selenium on performance, meat quality, and tissue characteristics of broilers. J. Appl. Poult. Res. 23, 15–22, https://doi.org/10.3382/japr.2013-00761
  • Pagmantidis V., Méplan C., van Schothorst E.M., Keijer J., Hesketh J.E., 2008. Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am. J. Clin. Nutr. 87, 181–189, https://doi.org/10.1093/ajcn/87.1.181
  • Saha U.K., 2017. Selenium: a vital element in soil-pant-animal/human continuum. J. Agric. Sci. Bot. 1, 1–3
  • Shi L., XunW., YueW., ZhangC., RenY., Shi L., WangQ., YangR., Lei F., 2011. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Res. 96, 49–52, https://doi.org/10.1016/j.smallrumres.2010.11.005
  • Singh R.P., Sreenivasa B.P., Dhar P., Shah L.C., Bandyopadhyay S.K., 2004. Development of a monoclonal antibody based competitive-ELISA for detection and titration of antibodies to peste des petits ruminants (PPR) virus. Vet. Microbiol. 98, 3–15, https://doi.org/10.1016/j.vetmic.2003.07.007
  • Stoytcheva Z.R., Berry M.J., 2009. Transcriptional regulation of mammalian selenoprotein expression. Biochim. Biophys. Acta 1790, 1429–1440, https://doi.org/10.1016/j.bbagen.2009.05.012
  • Sun B., Wang R., Li J., Jiang Y., Xu S., 2011. Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol. Trace Elem. Res. 143, 1516–1523, https://doi.org/10.1007/s12011-011-8995-z
  • Sunde R.A., RainesA.M., 2011. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv. Nutr. 2, 138–150, https://doi.org/10.3945/an.110.000240
  • Yuan D., Zheng L., Guo X.Y., Wang Y.X., Zhan X.A., 2013. Regulation of selenoprotein P concentration and expression by different sources of selenium in broiler breeders and their offspring. Poult. Sci. 92, 2375–2380, https://doi.org/10.3382/ps.2013-03155
  • Yue W., Zhang C., Shi L., Ren Y., Jiang Y., Kleemann D.O., 2009. Effect of supplemental selenomethionine on growth performance and serum antioxidant status in Taihangblack goats. AsianAustralas. J. Anim. Sci. 22, 365–370, https://doi.org/10.5713/ajas.2009.80474
  • Vignola G., Lambertini L., Mazzone G., Giammarco M., Tassinari M., Martelli G.,Bertin G., 2009. Effects of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Sci. 81, 678–685, https://doi.org/10.1016/j.meatsci.2008.11.009
  • Zhan X.A., Wang M., Zhao R.Q., Li W.F., Xu Z.R., 2007. Effects of different selenium source on selenium distribution, loin quality and antioxidant status in finishing pigs. Anim. Feed Sci. Technol. 132, 202–211, https://doi.org/10.1016/j.anifeedsci.2006.03.020
  • Zhang L., Zhou Z., Li G., Fu M., 2013. The effect of deposition Se on the mRNA expression levels of gpxs in goats from a Se-enriched county of China. Biol. Trace Elem. Res. 156, 111–123, https://doi.org/10.1007/s12011-013-9830-5
  • Zhou J.-C., Zhao H., Li J.-G., Xia X.-J., Wang K.-N., Zhang Y.-J., Liu Y., Zhao Y., Lei X.G., 2009. Selenoprotein gene expression in thyroid and pituitary of young pigs is not affected by dietary selenium deficiency or excess. J. Nutr. 139, 1061–1066, https://doi.org/10.3945/jn.109.104901

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-18b213fc-90a7-4ba6-af98-6863ea744161
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.