In present work, an approach to porous PEO coating sublayers determination on the basis of Glow-Discharge Optical Emission Spectroscopy (GDOES) measurements, is presented. CP Titanium Grade 2 was used for the study. By interpreting the depth profiles obtained by GDOES, the Authors could reveal boundaries of zones with specific features in the obtained coating. This way the porous PEO coating can be divided into different sublayers. The use of the first and second derivatives of hydrogen, phosphorus and titanium signals in the GD profiles allowed to determine thesesub-layers, with results shown in that article
Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, 15-17 Raclawicka Str., PL 75-620 Koszalin, Poland
Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, 15-17 Raclawicka Str., PL 75-620 Koszalin, Poland
Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, 15-17 Racławicka Str.,PL 75-620 Koszalin, Poland
Bibliografia
[1] Hryniewicz T., Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), 1989, Monograph no. 26, Koszalin University of Technology Publishing House; 161 pages.
[2] Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), 2007, Koszalin University of Technology Publishing House.
[3] Hryniewicz T., Rokosz K., Zschommler Sandim HR, SEM/EDX and XPS studies of niobium after electropolishing. Applied Surface Science, 263 (2012) 357-361.
[4] Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing, Transactions of The Institute ofMetal Finishing, 90 (2012) 188-196.
[5] Rokosz K., Electrochemical Polishing in magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), 2012, Koszalin University of Technology PublishingHouse, 211 pages.
[6] Hryniewicz T., Rokicki R., Rokosz K., Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments. Surface and Coatings Technology, 62(17-18) (2008) 3073-3076.
[7] Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magneto-electropolished at varying conditions. Surface and Coatings Technology, 204(16-17) (2010) 2583-2592.
[8] Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332.
[9] Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology, 203(9) (2008) 1508-1515.
[10] Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels. Materials Chemistry and Physics, 122(1) (2010) 169-174.
[11] Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters. Steel Research International, 83(9) (2012) 910-918.
[12] Hryniewicz T., Rokosz K., Highlights of magnetoelectropolishing, Frontiers in Materials: Corrosion Research, 1(3) (2014) 1-7 (Inaugural Article); DOI: 10.3389/fmats.2014.00003.
[13] Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Materials Chemistry and Physics, 123(1) (2010) 47-55.
[14] Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolishedAISI 316L SS biomaterial. Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
[15] Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Materials Letters,83 (2012) 69-72.
[16] Hryniewicz T., Rokosz K., Rokicki R., Prima F., Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8 (2015) 205-215.
[17] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surface and Interface Analysis, 47(1) (2015) 87-92.
[18] Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surface and Coatings Technology, 276 (2015) 516-520.
[19] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing. Tehnicki vjesnik -Technical Gazette, 23(3) (2016) 731-735.
[20] Rokosz K., Hryniewicz T., Raaen S., Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties. The International Journal of Advanced Manufacturing Technology, 85 (2016) 2425-2437; DOI: 10.1007/s00170-015-8086-y.
[21] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by Plasma Electrolytic Oxidation: Characterisation and Modelling. The International Journal of Advanced Manufacturing Technology, 2016; DOI 10.1007/s00170-016-8692-3
[22] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation. The International Journal of Advanced Manufacturing Technology, 2016, DOI 10.1007/s00170-016-9206-z
[23] Rokosz K., Hryniewicz T., Dudek Ł., Matysek D., Valiček J., Harničarova M., SEM and EDS Analysis of Surface Layer Formed on Titanium After Plasma Electrolytic Oxidation in H3PO4 with the Addition of Cu(NO3)2. Journal of Nanoscience and Nanotechnology, 16 (2016) 7814-7817.
[24] Rokosz K., Hryniewicz T., Dalibor M., Raaen S., Valiček J., Dudek Ł., Harničarova M., SEM, EDS andXPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials, 9(318) (2016) 1-12; DOI:10.3390/ma9050318.
[25] Rokosz K., Hryniewicz T., Raaen S., Chapon P., Dudek Ł., GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation. Surface and Interface Analysis, 2016; DOI 10.1002/sia.6136
[26] Gnedenkov S.V., Sharkeev Y.P., Sinebryukhov S.L., Khrisanfova O.A., Legostaeva E.V., Zavidnaya A.G., Puz’ A.V., Khlusov I.A., Opra D.P., Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: fundamental principles and synthesis conditions. Corrosion Review, 34(1-2) (2016) 65-83.
[27] Simka W., Sadowski A., Warczak M., Iwaniak A., Dercz G., Michalska J., Maciej A., Modification of titanium oxide layer by calcium and phosphorus. Electrochimica Acta, 56(24) (2011) 8962-8968.
[28] Han Y., Hong S.H., Xu K.W., (2002), Synthesis of nanocrystalline titania films by micro-arc oxidation. MaterialsLetters, 56 (2002) 744-747.
[29] Han Y., Hong S.H., Xu K.W., Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 168 (2003) 249-258.
[30] Fei C., Hai Z., Chen C., Yangjian X., Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation. Progress in Organic Coatings, 64 (2009) 264-267.
[31] Aliasghari S., Plasma Electrolytic Oxidation of Titanium. PhD Thesisof Faculty of Engineering and Physical Sciences, The University of Manchester, School of Materials, 2014, 223 pages.
[32] Teh T.H., Berkani A., Mato S., Skeldon P., Thompson G.E., Habazaki H., Shimizu K. (2003) Initial stages of plasma electrolytic oxidation of titanium. Corrosion Science, 45 (2003) 2757-2768.
[33] Krząkala A., Mlynski J., Dercz G., Michalska J., Maciej A., Nieuzyla L., Simka W., Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension. Archives of Metallurgy and Materials, 59(1) (2014) 199-204.
[34] Simka W., Nawrat G., Chlode J., Maciej A., Winiarski A., Szade J., Radwanski K., Gazdowicz J., Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysł Chemiczny, 90(1) (2011) 84-90.
[35] Wang Y., Jiang B., Lei T., Guo L., Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse. Materials Letters, 58 (2004) 1907-1911.
1st INTERNATIONAL SCIENTIFIC CONFERENCE, dilemmas of scientific research in various fields of science: natural sciences, science and technology, economic and social sciences, humanistic sciences, 10th October, 2016, Cracow, Poland