PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 3 |

Tytuł artykułu

Using abundance data to assess the relative role of sampling biases and evolutionary radiations in Upper Muschelkalk ammonoids

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Middle Triassic ammonoid genus Ceratites diversified spectacularly within the Germanic Muschelkalk Basin during the Anisian/Ladian (244–232 Mya). Previous studies have interpreted this diversification as a sequence of rapid, endemic radiations from a few immigrant taxa. Here we investigate the possibility that geological and sampling biases, rather than ecological and evolutionary processes, are responsible for this pattern. A new specimen−based dataset of Ceratites species−richness and abundance was assembled. This dataset was combined with 1:200 000 geological maps in a geodatabase to facilitate geospatial analyses. One set of analyses compared species richness per geological map with the number of occurrences and localities per map. Per−map change in the amount of rock available to sample for fossils was also included as a variable. Of these three variables, number of occurrences is the most strongly correlated with richness. Variation in the amount of rock is not a strong determinant of species−richness. However, rarefaction of basin−wide species/abundance data demonstrates that differences in species−richness through time are not attributable to sample size differences. The average percent similarity among sites remained close to 50% throughout the Upper Muschelkalk. The rank abundance distribution (RAD) of species from the first interval of the Upper Muschelkalk is consistent with colonization of a disturbed environment, while the other two intervals have RADs consistent with more stable ecosystems. These results indicate that genuine ecological and evolutionary events are partly responsible for the observed differences in richness and abundance. Although changes in the RADs through time support changes in the ammonoid assemblage structure, the processes underlying increasing richness and change in RADs cannot be explained by increasing geographic distinctiveness or isolation among the ammonoid assemblages present at different localities.

Wydawca

-

Rocznik

Tom

58

Numer

3

Opis fizyczny

p.561-572,fig.,ref.

Twórcy

autor
  • Leibniz Institution for Research on Evolution and Biodiversity, Humboldt University, Berlin, D-10115, Germany
  • School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, U.K.
autor
  • Leibniz Institution for Research on Evolution and Biodiversity, Humboldt University, Berlin, D-10115, Germany

Bibliografia

  • Aigner, T. 1985. Storm depositional systems. Lecture Notes in Earth Sciences 3: 1–174.
  • Aigner, T. and Bachmann, G.H. 1992. Sequence−stratigraphic framework of the German Triassic. Sedimentary Geology 80: 115–135.
  • Aigner, T. and Bachman, G.H. 1993. Sequence stratigraphy of the German Muschelkalk. In: H. Hagdorn and A. Seilacher (eds.), Muschelkalk. Ergebnisse des Schöntaler Symposiums 1991, Sonderbände der Gesellschaft für Naturkunde in Württemberg 2, 15–18. Korb, Stuttgart.
  • Alroy, J., Aberhan, M, Bottjer, D.J., Foote, M., Fürsich, F.T., Harries, P.J., Hendy, A.J.W., Holland, S.M., Ivany, L.C., Kiessling, W., Kosnik, M.A., Marshall, C.R., McGowan, A.J., Miller, A.I.,Olszewski, T.D., Patzkowsky, M.E., Peters, S.E., Villier, L., Wagner, P.J., Bonuso, N., Borkow, P.S., Brenneis, B., Clapham, M.E., Fall, M., Ferguson, C.A., Hanson, V.L., Krug, A.Z., Layou, K.M., Leckey, E.H., Nürnberg, S., Powers, C.M., Sessa, J.A., Simpson, C., Tomasyovch, A., and Visaggi, C.C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321: 97–100.
  • Alroy, J., Marshall, C.R., Bambach, R.K., Bezusko, K., Foote, M., Fürsich, F.T., Hansen, T.A., Holland, S.M., Ivany, L.C., Jablonski, D., Jacobs, D.K., Jones, D.C., Kosnik, M.A., Lidgard, S., Low, S., Miller, A.I., Novack−Gottshall, P.M., Olszewski, T.D., Patzkowsky, M.E., Raup, D.M., Roy, K., Sepkoski, J.J., Sommers, M.G., Wagner, P.J., and Webber , A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences—USA 98: 6261–6266.
  • Anderson, J., Anderson, H., and Sichel, H. 1996. The Triassic Explosion(?): a statistical model for extrapolating biodiversity based on the terrestrial Molteno Formation. Paleobiology 22: 318–328.
  • Bayer, U. and McGhee, G.R ., Jr. 1985. Evolution in marginal epicontinental basins: The role of phylogenetic and ecological factors. In: U. Bayer and A. Seilacher (eds.), Lecture Notes in Earth Sciences 1, 163–220. Springer−Verlag, Berlin.
  • Bulot, L.G. 1993. Stratigraphical implications of the relationships between ammonites and facies: examples taken from the Lower Cretaceous (Valanginian–Hauterivian) of the Western Tethys. In: M.R. House (ed.), The Ammonoidea: Environment, Ecology, and Evolutionary Change, 243–266. Clarendon Press, Oxford.
  • Burnham, K.P. and Anderson, D.R. 2002. Model Selection and Multimodel Inference: A Practical Information—Theoretic Approach, 2nd ed. 488 pp. Springer−Verlag, Berlin.
  • Bush, A.M., Markey, M.J., and Marshall, C.R. 2004. Removing bias from diversity curves: the effects of spatially organized biodiversity on sampling−standardization. Paleobiology 30: 666–686.
  • Crampton, J.S., Beu, A.G., Cooper, R.A., Jones, C.M., Marshall, B., and Maxwell, P.A. 2003. Estimating the rock volume bias in paleobiodiversity studies. Science 301: 358–360.
  • Gaston, K. and Blackburn, T.M. 2000. Patterns and Processes in Macroecology. 377 pp. Blackwell Scientific, Oxford.
  • Gauch, H.G. 1982. Multivariate Analysis in Community Ecology. 298 pp. Cambridge University Press, Cambridge.
  • Gibbons, D.W., Reid, J.B., and Chapman, R.A. 1993 The New Atlas of Breeding Birds in Britain and Ireland: 1988–1991. T & A.D. Poyser, London.
  • Greenwood, P.H. 1981. Species−flocks and explosive evolution. In: P.H. Greenwood and P.L. Forey (eds.), Chance, Change and Challenge—The Evolving Biosphere, 61–74. Cambridge University Press and British Museum (Natural History), London.
  • Grytnes, J.−A. and Romdal, T. 2008. Using museum collections to estimate diversity patterns along geographical gradients. Folia Geobotanica 43: 357–369.
  • Guralnick, R.P. and Van Cleve, J. 2005. Strengths and weaknesses of museum and national survey data sets for predicting regional species richness: comparative and combined approaches. Diversity and Distributions 11: 349–359.
  • Guralnick, R.P., Hill, A.W., and Lane, M. 2007. Towards a collaborative, global infrastructure for biodiversity assessment. Ecology Letters 10: 663–672.
  • Hagdorn, H. 1991. The Muschelkalk in Germany. An Introduction. In: H. Hagdorn, in cooperation with T. Simon and J. Szulc (eds.), Muschelkalk: A Field Guide, 9–21, Korb (Goldschneck), Stuttgart.
  • Hagdorn, H. 2004. Muschelkalk Museum Ingelfingen. 88 pp. Lattner, Heilbronn.
  • Hammer, Ø. and Harper, D.A.T. 2006. Paleontological Data Analysis. 351 pp. Blackwell, Oxford.
  • Harnik, P. 2009. Unveiling rare diversity by integrating museum, literature, and field data. Paleobiology 35: 190–208.
  • Hayek, L.−A.C. and Buzas, M.A. 1997. Surveying Natural Populations. 563 pp. Columbia University Press, New York.
  • Heim, N. 2009. Stability of regional brachiopod diversity structure across the Mississippian/Pennsylvanian boundary. Paleobiology 35: 393–412.
  • Holland, S.M. 1995. The stratigraphic distribution of fossils. Paleobiology 21: 92–109.
  • Holland, S.M. 1999. The new stratigraphy and its promise for paleobiology. Paleobiology 25: 409–416.
  • Holland, S.M. 2000. The quality of the fossil record: a sequence stratigraphic perspective. Paleobiology 26 (Supplement): 148–168.
  • Jacobs, D.K., Landman, N.H., and Chamberlain, J.A., Jr. 1994. Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment. Geology 22: 905–908.
  • Kaim, A. and Niedźwiedzki, R. 1999. Middle Triassic ammonoids from Silesia, Poland. Acta Palaeontologica Polonica 44: 93–115.
  • Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F.T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A.P. 2006. Ecological, taxonomic, and taphonomic components of the post−Paleozoic increase in sample−level species diversity of marine benthos. Paleobiology 32: 533–561.
  • Klug, C., Schatz, W., Korn, D., and Reisdorf, A.G. 2005. Morphological fluctuations of ammonoid assemblages from the Muschelkalk (Middle Triassic) of the Germanic Basin−indicators of their ecology, extinctions, and immigrations. Palaeogeography, Palaeoclimatology, Palaeoecology 221: 7–34.
  • Layou, K. 2007. A quantitative null model of additive diversity partitioning: examining the response of beta diversity to extinction. Paleobiology 33: 116–124.
  • Lockwood, R. and Chastant, L.R. 2006. Quantifying taphonomic bias of compositional fidelity, species richness and rank abundance in molluscan death assemblages from the Upper Chesapeake Bay. Palaios 4: 376–383.
  • Mac Nally, R., Fleishman, E., Bulluck, L.P., and Betrus, C.J. 2004. Comparative influence of spatial scale on beta diversity within regional assemblages of birds and butterflies. Journal of Biogeography 31: 917–929.
  • Magurran, A.E. 2004. Measuring Biological Diversity. 256 pp. Blackwell, Oxford.
  • May, R.M. 1975. Patterns of species abundance and diversity. In: M.L. Cody and J.M. Diamond (eds.), Ecology and Evolution of Communities, 197–227. Harvard University Press, Cambridge.
  • May, R.M. 1981. Patterns in multi−species communities. In: R.M. May (ed.), Theoretical Ecology: Principles and Applications, 197–227. Blackwell, Oxford.
  • McCune, A.R. 1990. Evolutionary novelty and atavism in the Semionotus Complex: relaxed selection during colonization of an expanding lake. Evolution 44: 71–85.
  • McCune, A.R. 1996. Biogeographic and stratigraphic evidence for rapid speciation in semionotid fishes. Paleobiology 22: 34–48.
  • McGowan, A.J. 2009. Do ammonoids of the Upper Muschelkalk represent a “species flock”? 53rd Palaeontological Association Annual Meeting, Abstracts, 62. Y Lolfa, Talybont.
  • Menning, M., Hagdorn, H., Käding, K.C., Simon, T., Szurlies, M., and Nitsch, E. 2005. Zeitskala für Perm und Trias in der Stratigraphischen Tabelle von Deutschland 2002, zyklostratigraphische Kalibrierung der höheren Dyas und Germanischen Trias und das Alter der Stufen Roadium bis Rhaetium. Newsletters on Stratigraphy 41: 173–210.
  • Meyer, A. 1993. Phylogenetic relationships and evolutionary processes in East African cichlid fishes. Trends in Ecology and Evolution 8: 279–284.
  • Miller, A.I., Aberhan, M., Buick, D.P., Bulinski, K.V., Ferguson, C.A., Hendy, A.J.W., and Kiessling, W. 2009. Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiology 35: 612–630.
  • Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O‘Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., and Wagner, H. 2011. Vegan: Community Ecology Package. R package version 2.0−1. http://CRAN.R−project.org/package=vegan
  • Page, K.N. 1996. Mesozoic ammonoids in time and space. In: N.H. Landman, K. Tanabe, and R.A. Davis (eds.), Ammonoid Paleobiology, 755–794. Plenum, New York.
  • Patzkowsky, M.E. and Holland, S.M. 1996. Extinction, invasion, and sequence stratigraphy: patterns of faunal change in the Middle and Upper Ordovician of the eastern United States. In: B.J. Witzke, G.A. Ludvigsen, and J.E. Day (eds.), Paleozoic Sequence Stratigraphy: Views from the North American Craton. Geological Society of America Special Paper 306: 131–142.
  • Patzkowsky, M.E. and Holland, S.M. 2007. Diversity partitioning of a Late Ordovician marine biotic invasion: controls on diversity in regional ecosystems. Paleobiology 33: 295–309.
  • Peters, S.E. and Bork, K.B. 1999. Species−abundance models: an ecological approach to inferring paleoenvironments and resolving paleoecological change in the Waldron Shale. Palaois 14: 234–245.
  • Peters, S.E. and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27: 583–601.
  • Peters, S.E. and Foote, M. 2002. Determinants of extinction in the fossil record. Nature 416: 420–424.
  • Preston, F.W. 1948. The commonness and rarity of species. Ecology 29: 254–283.
  • R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
  • Raup D.M. 1972. Taxonomic diversity during the Phanerozoic. Science 177: 1065–1071.
  • Raup, D.M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2: 289–297.
  • Rosenzweig, M. 1995. Species Diversity in Space and Time. 436 pp. Cambridge University Press, Cambridge.
  • Schluter, D. 2000. The Ecology of Adaptive Radiation. 288 pp. Oxford University Press, Oxford.
  • Smith, A.B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, London 164: 731–745.
  • Smith, A.B. and McGowan, A.J. 2007. The shape of the Phanerozoic marine palaeodiversity curve: How much can be predicted from the sedimentary rock record of western Europe? Palaeontology 50: 1–10.
  • Smith, A.B., Gale, A.S., and Monks, N.E.A. 2001. Sea−level change and rock record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27: 241–253.
  • Sugihara, G. 1980. Minimal community structure: an explanation of species abundance patterns. American Naturalist 116: 770–787.
  • Tokeshi, M. 1999. Species Coexistence: Ecological and Evolutionary Perspectives. 455 pp. Blackwell Science, Oxford.
  • Tozer, E.T. 1981. Triassic Ammonoidea: geographic and stratigraphic distribution. In: M.R. House and J.R. Senior (eds.), The Ammonoidea. Systematics Association Special Volume 18: 397–410. Academic Press, London.
  • Ulrichs, M. 2006. Dimorphismus bei Ceratites aus dem Germanischen Oberen Muschelkalk (Ammonoidea, Mitteltrias) mit revision Einiger Arten. Stuttgarter Beiträge zur Naturkunde B 363: 1–85.
  • Ulrichs, M. and Mundlos, R. 1985. Immigration of cephalopods into the German Muschelkalk and its influence on the suture lines. In: U. Bayer and A. Seilacher (eds.), Lecture Notes in Earth Sciences 1, 221–236. Springer−Verlag, Berlin.
  • Ulrichs, M. and Mundlos, R. 1990. Zur Ceratiten−Stratigraphie im Oberen Muschelkalk (Mitteltrias) Nordwürttemberg. Jahrbuch für Gesellschaft für Naturkunde in Württemberg 145: 59–74.
  • Wagner, P.J., Kosnik, M.A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post−Paleozoic marine ecosystems. Science 314: 1289–1292.
  • Wang, Y. and Westermann, G.E.G. 1993. Paleoecology of Triassic ammonoids. Geobios 15: 373–392.
  • Wenger, R. 1957. Die Ceratiten der germanischen Trias. Palaeontographica A 108: 57–129.
  • Yacobucci, M.M. 1999. Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids: an example from the Cenomanian Western Interior Seaway of North America. In: F. Oloriz and F.J. Rodriguez−Tovar (eds.), Advancing Research on Living and Fossil Cephalopods, 59–77. Kluwer Academic/Plenum Publishers, New York.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-16fda7d4-09c2-46a5-a2d4-857ef5ee5b3c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.