PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 68 | 1 |

Tytuł artykułu

Antioxidative effects of phenolic compounds of mushroom mycelia in simulated regions of the human colon, in vitro study

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Many compounds in mushrooms are biologically active; however, the in vivo actions of their metabolites are poorly understood. An in vitro system, GIS1, was used to simulate the fermentation action of microbiota in each colon region. We used MycoPo, a natural product obtained from the lyophilized mycelia of different Pleurotus ostreatus species to determine the biological effects in human-colon regions. Controls (Lentinula edodes mycelia; dried basidia of Agaricus brunnescens) were chosen to confi rm the biological activity of P. ostreatus mycelia in vitro. We measured total antioxidant capacity and ferric ion-reducing antioxidant power (FRAP) in simulated colon regions to identify antioxidant compounds, and undertook in vitro gastrointestinal simulation and microbiological analyses. The highest FRAP was found for the ascending colon, and the antioxidant effect was higher when MycoPo was administered. A. brunnescens consumption resulted in low total antioxidant capacity. Polyphenol content was correlated with the antioxidant status and microbial composition of microbiota. Total polyphenolic content was higher after A. brunnescens consumption, and four types of polyphenols were identifi ed by high-performance liquid chromatography. Major phenolic acids were gentisic acid, homogentisic acid, and small amounts of caffeic acid. The Enterobacteriaceae species populations varied greatly across the three parts of the colon. We noted a signifi cant (p<0.01) correlation between antioxidant status in the transverse and descending colon after MycoPo administration, and A. brunnescens consumption with the number of Lactobacillus and Bifi dobacteria species (R2 >0.85). These data suggest a direct relationship between favorable bacterial strains and availability of bioactive compounds, with specifi city for each colon region.

Wydawca

-

Rocznik

Tom

68

Numer

1

Opis fizyczny

p.83-90,fig.,ref.

Twórcy

autor
  • Faculty of Biotechnology, University of Agronomic Science and Veterinary Medicine, 59 Marasti blvd, 1 district, 011464, Bucharest, Romania
autor
  • MICROGEN – Center for Research in Microbiology, Genetics and Biotechnology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Str., 5 district, 060101, Bucharest, Romania
autor
  • MICROGEN – Center for Research in Microbiology, Genetics and Biotechnology, Faculty of Biology, University of Bucharest, 1–3 Portocalilor Str., 5 district, 060101, Bucharest, Romania

Bibliografia

  • 1. Alpinar K., Ozyurek M., Kolak U., Guclu K., Aras C., Altun M., Celik S.E., Berker K.I., Bektasoglu B., Apak R., Antioxidant capacities of some food plants wildly grown in Ayvalik of Turkey. Food Sci. Technol. Res., 2009, 15, 59–64.
  • 2. Bartosch S., Fite A., Macfarlane G.T., McMurdo E.T., Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl. Environ. Microbiol., 2004, 70, 3575–3581.
  • 3. Chen S.Y., Ho K.J., Liang C.H., Tsai C.H., Huang L.Y., Mau J.L., Preparation of culinary-medicinal king oyster mushroom Pleurotus eryngii-fermented products with high ergothioneine content and their taste quality. Int. J. Med. Mush., 2012, 14, 85–93.
  • 4. Choi C.H., Chang S.K., Alteration of gut microbiota and effi cacy of probiotics in functional constipation. J. Neurogastroenterol. Motil., 2015, 21, 4–7.
  • 5. Conlon M.A., Bird A.R., The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2015, 7, 17–44.
  • 6. Din A.R.J.M., Razak S.A., Sabaratnam V., Effect of mushroom supplementation as a prebiotic compound in super worm based diet on growth performance of red tilapia fingerlings. Sains Malaysiana, 2012, 41, 1197–1203.
  • 7. Diwan R., Shinde A., Malpathak N., Phytochemical composition and antioxidant potential of Ruta graveolens L. in vitro culturelines. J. Bot., 2012, Article ID 685427.
  • 8. Ekor M., The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
  • 9. Elisashvili V., Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). Int. J. Med. Mush., 2012, 14, 211–239.
  • 10. Green R.J., Murphy A.S., Schulz B., Watkins B.A., Ferruzzi M.G., Common tea formulations modulate in vitro digestive recovery of green tea catechins. Mol. Nutr. Food Res., 2007, 51, 1152–1162.
  • 11. Guerra A., Etienne-Mesmin L., Livrelli V., Denis S., Blanquet- -Diot S., Alric M., Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol., 2012, 30, 591–600.
  • 12. Gerritsen J., Smidt H., Rijkers G.T., de Vos W.M., Intestinal microbiota in human health and disease: the impact of probiotics. Genes Nutr., 2011, 6, 209–240.
  • 13. Hamer H.M., Jonkers D., Venema K., Vanhoutvin S., Troost F.J., Brummer R.J., Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Therapeut., 2008, 27, 104–119.
  • 14. Heilig H.G., Zoetendal E.G., Vaughan E.E., Marteau P., Akkermans A.D., de Vos W.M., Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specifi camplification of 16S ribosomal DNA. Appl. Environ. Microbiol., 2002, 68, 114–123.
  • 15. Hughes R., Magee E.A.M., Bingham S., Protein degradation in the large intestine: relevance to colorectal cancer. Curr. Issues Intest. Microbiol., 2000, 1, 51–58.
  • 16. Hur S.J., Lim B.O., Decker E.A., McClements D.J., In vitro human digestion models for food applications. Food Chem., 2011, 125, 1–12.
  • 17. Hutcheson R., Rocic P., The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: the great exploration. Exp. Diabetes Res., 2012, Article ID 271028.
  • 18. Jeong S.C., Koyyalamudi S.R., Hughes J., Khoo C., Bailey T., Marripudi K., Park J.P., Kim J.H., Song C.H., Antioxidant and immunomodulating activities of exo- and endopolysac-charide fractions from submerged mycelia cultures of culinarymedicinal mushrooms. Int. J. Med. Mush., 2013, 15, 251–266.
  • 19. Kailasapathy K., Chin, J., Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifi dobacterium spp.. Immun. Cell Biol., 2000, 78, 80–88.
  • 20. Koleva P.T., Bridgman S.L., Kozyrskyj A.L., The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients, 2015, 7, 2237–2260.
  • 21. Lam Y.S., Okello E.J., Determination of lovastatin, -glucan, total polyphenols, and antioxidant activity in raw and processed oyster culinary-medicinal mushroom, Pleurotus ostreatus (higher Basidiomycetes). Int. J. Med. Mush., 2015, 17, 117–128.
  • 22. Lee B.C., Bae J.T., Pyo H.B., Choe T.B., Sang W.K., Hwang H.J., Yun J.W., Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enz. Microbial Technol., 2004, 35, 369–376.
  • 23. Lindequist U., Niedermeyer T.H.J., Jülich W.D., The pharmacological potential of mushrooms. Evid. Based Complement Alt. Med., 2005, 2, 285–299.
  • 24. Mai V., Torrazza R.M., Ukhanova M., Wang X., Sun Y., Li N., Shuster J., Sharma R., Hudak M.L., Neu J., Distortions in development of intestinal microbiota associated with late onset sepsis in preterm infants. PLOS One, 2013, 8, e52876.
  • 25. Manach C., Scalbert A., Morand C., Remesy C., Jimenez L., Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79, 5727–5747.
  • 26. Mitsuyama K., Sata M., Gut microfl ora: a new target for therapeutic approaches in infl ammatory bowel disease. Expert Opin. Ther. Tar., 2008, 12, 301–312.
  • 27. Ozyurek M., Bener M., Guclu K., Donmez A.A., Suzgec-Selcuk S., Pirildar S., Mericli A.H., Apak R., Evaluation of antioxidant activity of Crataegus species collected from different regions of Turkey. Rec. Nat. Prod., 2012, 6, 263–277.
  • 28. Prasad R., Varshney V.K., Harsh N.S., Kumar M., Antioxidant capacity and total phenolics content of the fruiting bodies and submerged cultured mycelia of sixteen higher Basidiomycetes mushrooms from India. Int. J. Med. Mush., 2015, 17, 933–941.
  • 29. Premanath R., Sudisha J., Devi L.N., Aradhya S.M.. Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenum graecum L.) leaves. J. Med. Plants Res., 2011, 5, 695–705 [http:// docsdrive.com/pdfs/academicjournals/rjmp/2011/695–705.pdf].
  • 30. Qin X., Emerson J., Stapp J., Stapp L., Abe, P., Burns J.L., Use of real-time PCR with multiple targets to identify Pseudomonas aeruginosa and other nonfermenting gram-negative bacilli from patients with cystic fi brosis. J. Clin. Microbiol., 2003, 41, 4312–4317.
  • 31. Rinttila T., Kassinen A., Malinen E., Krogius L., Palva A., Development of an extensive set of 16S rDNA-targeted primers for quantifi cation of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol., 2004, 97, 1166–1177.
  • 32. Rodriguez-Roque M.J., Rojas-Grau M.A., Elez-Martinez P., Martin-Belloso O., Soymilk phenolic compounds, isofl avones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem., 2013, 136, 206–212.
  • 33. Rossi M., Corradini C., Amaretti A., Nicolini M., Pompei A., Zanoni S., Matteuzzi D., Fermentation of fructooligosaccharides and inulin by bifi dobacteria: a comparative study of pure and fecal cultures. Appl. Environ. Microbiol., 2005, 71, 6150–6158.
  • 34. Synytsya A., Mickova K., Synytsya A., Jablonsky I., Spevacek J., Erban V., Kovarikova E., Copikova J., Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr. Pol., 2009, 76, 548–556.
  • 35. Tzortzis G., Goulas A.K., Gee J.M., Gibson G.R., Novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. J. Nutr., 2005, 135, 1726–1731.
  • 36. Vamanu E., Biological activities of the polysaccharides produced in submerged culture of two edible Pleurotus ostreatus mushrooms. J. Biomed. Biotechnol., 2012, Article ID 565974.
  • 37. Vamanu E., Nita S., Biological activity of fluidized bed ethanol extracts from several edible mushrooms. Food Sci. Biotechnol., 2014, 23, 1483–1490.
  • 38. Vamanu E., Pelinescu D., Avram I., Niţă S., Vamanu A., Study of PROBAC product influence on infant microbiota in a single chamber colonic fermentation model GIS1. Ann. Microbiol., 2012, 63, 1029–1038.
  • 39. Vamanu E., Pelinescu D., Avram I., Nita S., An in-vitro evaluation of antioxidant and colonic microbial profi le levels following mushroom consumption. BioMed Res. Int., 2013, Article ID 289821.
  • 40. van de Heijning B.J.M., Berton A., Bouritius H., Goulet O., GI symptoms in infants are a potential target for fermented infant milk formulae: a review. Nutrients, 2014, 6, 3942–3967.
  • 41. Wasser S.P., Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J., 2014, 37, 345–356.
  • 42. Wang Y., Ametaj B.N., Ambrose D.J., Gänzle M.G., Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici. BMC Microbiol., 2013, 13, 19.
  • 43. Yokota M.E., Frison P.S., Marcante R.C., Jorge L.F., Valle J.S., Dragunski D.C., Colauto N.B., Linde G.A., Iron translocation in Pleurotus ostreatus basidiocarps: production, bioavailability, and antioxidant activity. Gen. Mol. Res., 2016, 15, Art. no. UNSP 1501788.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-15929c17-edee-4f2e-af44-5d9157261630
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.