PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 162 | 09 |

Tytuł artykułu

Potencjał nietoperzy w biologicznej ochronie lasu

Autorzy

Treść / Zawartość

Warianty tytułu

EN
Bats as a potential biological pest control agent in forest

Języki publikacji

PL

Abstrakty

EN
Bats have a set of features that make them very effective insects predators, thus they can potentially play an important role as a biological pest control agent in forests. The active flight ability, nocturnal lifestyle, high level of metabolism and a lack of a significant threat from predators make bats the most important predators of insects active in the evening and at night. All bats species noted in Poland are associated with forests, where they use various microhabitats and forage on various types of prey. According to foraging strategy and diet, insect−eating bats have been divided into several ecomorphological groups, which shows different efficacy in foraging on particular species of forest insects pests. Numerous studies indicate that bats diet includes primary forest pests from order Lepidoptera and also some species from Diptera and Coleoptera. Forest pests from Lepidoptera and Diptera represent a significant share in the diet of gleaning bats, especially long eared bats Plecotus sp., barbastelle Barbastella barbastellus and Natterer’s bats Myotis nattererii. During the swarming period Melolonthinae sp. and Amphimallon sp. (Coleoptera) dominate in the diet of all larger species of bats, especially aerial hawkers and bats foraging along the linear elements in the landscape: serotine bat Eptesicus serotinus, commone noctule Nyctalus noctula, lesser noctule Nyctalus leisleri and mouse eared bat Myotis myotis (which forage mainly on ground beetles). Moreover many bat species are able to change diet and adapt it to the most abundant prey. According to forest protection, the most important guilds are gleaners, bats foraging in the dense vegetation and canopy and aerial hawkers. Bats have a great potential as a biological control agents and all conservation practices including this group of animals will simultaneously support the natural forest resistance mechanisms.

Wydawca

-

Czasopismo

Rocznik

Tom

162

Numer

09

Opis fizyczny

s.707-717,tab.,bibliogr.

Twórcy

autor
  • Katedra Ochrony Lasu i Ekologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, ul.Nowoursynowska 159, 02-776 Warszawa

Bibliografia

  • Aldridge H. D. J. N., Rautenbach I. L. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology 56: 763-778.
  • Almenar D., Aihartza J., Goiti U., Salsamendi E., Garin I. 2012. Hierarchical patch choice by an insectivorous bat through prey availability components. Behavioral Ecology and Sociobiology 67 (2): 311-320.
  • Arlettaz R. 1996. Feeding behaviour and foraging strategy of free-living mouse eared bats, Myotis myotis and Myotis blythii. Animal Behavioral 51: 1-11.
  • Arlettaz R. 1999. Habitat selection as a major resource partitioning mechanism between two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology 68: 460-471.
  • Arlettaz R., Ruendi M., Ibanez G., Paimeirim J., Hausser J. 1997. A new perspective on the zoogeography of the sibling mouse-eared bat Myotis myotis and Myotis blythii: morphological, genetical and ecological evidence. Journal of Zoology 242: 45-62.
  • Barclay R. M. B., Brigham R. M. 1991. Prey Detection, Dietary Niche Breadth, and Body Size in Bats: Why are Aerial Insectivorous Bats so Small? The American Naturalist 137 (5): 693-703.
  • Barros M. A. S., Rui A. M., Pessoa D. 2014. Habitat use and seasonal activity of insectivorous bats (Mammalia: Chiroptera) in the grasslands of southern Brazil. Zoologia (Curitiba) 31 (2): 153-161.
  • Boesing A. L., Nichols E., Metzger J. P. 2017. Effects of landscape structure on avian-mediated insect pest control services: a review. Landscape Ecology 32 (5): 931-944.
  • Boyles J. G., Cryan P. M., McCracken G. F., Kunz T. H. 2011. Economic Importance of Bats in Agriculture. Science 332 (6025): 41-42.
  • Böhm S. M., Wells K., Kalko E. K. V. 2011. Top-Down Control of Herbivory by Birds and Bats in the Canopy of Temperate Broad-Leaved Oaks (Quercus robur). PLoS ONE 6: e17857.
  • Bradshaw P. A. 1996. The physical nature of vertical forest habitat and its importance in shaping bat species assemblages. Bats and Forests Symposium. October 19-21, 1995. Victoria, British Columbia, Canada. 199-212.
  • Brigham R. M., Grindal S. D., Firman M. C., Morissette J. L. 1997. The influence of structural clutter on insectivorous bats. Canadian Journal of Zoology 75 (1): 131-136.
  • Bruns H. 1960. The Economic Importance of Birds in Forests. Bird Study 7 (4): 193-208.
  • Buckhurst A. S. 1930. Moths destroyed by a long eared bat. Entomologist 63: 238.
  • Buckner Ch. H. 1966. The role of vertebrates predators in the biological control of forest insects. Annual Review of Entomology11: 449-470.
  • Burgiełł P. 2017. Wpływ leśnych zabiegów hodowlanych na nietoperze. Sylwan 161 (9): 738-747.
  • Cel’uch M., Kropil R. 2008. Bats in a Carpathian beech-oak forest (Central Europe): habitat use, foraging assemblages and activity patterns. Folia Zoologica 57 (4): 358-372.
  • Charbonnier Y., Barbaro L., Theillout A., Jactel H. 2014. Numerical and Functional Responses of Forest Bats to a Major Insect Pest in Pine Plantations. PLoS ONE 9 (10): e109488.
  • Ciechanowski M. 2002. Community structure and activity of bats (Chiroptera) over different water bodies. Mammalian Biology – Zeitschrift für Säugetierkunde 67 (5): 276-285.
  • Ciechanowski M., Sachanowicz K., Kokurewicz T. 2007. Rare or underestimated? – The distribution and abundance of the pond bat (Myotis dasycneme) in Poland. Lutra 50 (2): 107-134.
  • Ciechanowski M., Zając T., Zielińska A., Dunajski R. 2010. Seasonal activity patterns of seven vespertilionid bat species in Polish lowlands. Acta Theriologica 55 (4): 301-314.
  • Ciechanowski M., Zapart A. 2012. The Diet of the Pond Bat Myotis dasycneme and Its Seasonal Variation in a Forested Lakeland of Northern Poland. Chiropterologica 14 (1): 73-79.
  • Cleveland C. J., Betke M., Federico P., Frank J. D., Hallam T. G., Horn J., López Jr J. D., McCracken G. F., Medellín R. A., Moreno-Valdez A., Sansone Ch. G., Westbrook J. K., Kunz T. H. 2006. Economic value of the pest control service provided by Brazilian free-tailed bats in south-central Texas. Frontiers in Ecology and the Environment 4: 238-243.
  • Denzinger A., Schnitzler H.-U. 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology 4: 164.
  • Dietz M., Pir J. 2009. Distribution and habitat selection of Myotis bechsteinii in Luxembourg: Implications for forest management and conservation. Folia Zoologica 58 (3): 327-340.
  • Dolbeer R. A. 1990. Ornithology and integrated pest management: Red-winged Blackbirds. Ibis 132: 309-322.
  • Erickson J. L., West S. D. 2002. The Influence of Regional Climate and Nightly Weather Conditions on Activity Patterns of Insectivorous Bats. Acta Chiropterologica 4 (1): 17-24.
  • Fenton M. B. 1999. Describing the echolocation calls and behaviour of bats. Acta Chiropterologica 1: 127-136.
  • Flavin D. A., Biggane S. S., Shiel C. B., Smiddy P., Fairley J. S. 2001. Analysis of the diet of Daubenton’s bat Myotis daubentonii in Ireland. Acta Theriologica 46 (1): 43-52.
  • Forbes S. A. 1903. The Food of Birds. Bulletin of the Illinois State Laboratory of Natural History 1 (3): 86-161.
  • Forbes S. A. 1882. The Regulative Action of Birds upon Insect Oscillations. Illinois State Laboratory of Natural History 6: 1-31.
  • Fullard J. H., Koehler C., Surlykke A., Mckenzie N. L. 1991. Echolocation Ecology and Flight Morphology of Insectivorous Bats (Chiroptera) in South-Western Australia. Australian Journal of Zoology 39 (4): 427-438.
  • Furlonger C. L., Dewar H. J., Fenton M. B. 1987. Habitat use by foraging insectivorous bats. Canadian Journal of Zoology 65 (2): 284-288.
  • Gloor S., Stutz H.-P. B., Ziswiler V. 1995. Nutritional habits of the noctule bat Nyctalus noctula (Schreber, 1774) in Switzerland. Myotis 32-33: 231-243.
  • Greadhead D. J., Greadhead A. H. 1992. Biological control of insects pests by insects parasites and predators: the BIOCAT database. Biocontrol News and Informations 13 (4): 61-68.
  • Greenberg R. P., Bichier A. C., Angon C., Macvean R. P., Cano E. 2000. The impact of avian insectivory on arthropods and leaf damage in some Guatemalan coffee plantations. Ecology 81: 1750-1755.
  • Grindal S. D. 1995. Impacts of forest harvesting on habitat use by foraging bats in southern British Columbia. M.Sc. Thesis, University of Regina. Regina, Sask.
  • Haulton S., DeCosta K. L. 2014. Bat Activity in Selection Harvests and Intact Forest Canopy Gaps at Indiana State Forests. W: Groninger J. W., Holzmueller E. J., Nielsen C. K., Dey D. C. [red.]. Proceedings, 19th Central Hardwood Forest Conference 2014, March 10-12, Carbondale.
  • Haupt M., Menzler S., Schmidt S. 2006. Flexibility of habitat use in Eptesicus nilssonii: does the species profit from anthropogenically altered habitats? Journal of Mammalogy 87 (2): 351-361.
  • Instrukcja ochrony lasu. 2012. CILP, Warszawa.
  • Jones G., Rayner J. M. V. 1988. Flight performance, foraging tactics and echolocation in free-living Daubenton’s bats Myotis daubentoni (Chiroptera: Vespertilionidae). Journal of Zoology Explore 215 (1): 113-132.
  • Kalcounis M. C., Hobson K. A., Brigham R. M., Hecker K. R. 1999. Bat Activity in the Boreal Forest: Importance of Stand Type and Vertical Strata. Journal of Mammalogy 80 (2): 673-682.
  • Kalka M. B., Smith A. R., Kalko E. K. V. 2008. Bats Limit Arthropods and Herbivory in a Tropical Forest Science 320 (5872): 71.
  • Kalko E. K. V., Schnitzler H.-U. 1989. The Echolocation and Hunting Behavior of Daubenton’s Bat, Myotis daubentoni. Behavioral Ecology and Sociobiology 24 (4): 225-238.
  • Kasso M., Balakrishnan M. 2013. Ecological and Economic Importance of Bats (Order Chiroptera). International Scholarly Research Notices Biodiversity. Article ID 187415. http://dx.doi.org/10.1155/2013/187415 (9187415): 1-9.
  • Krüger F., Clare E. L., Greif S., Siemers B. M., Symondson W. O. C., Sommer R. S. 2013. An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycneme and Myotis daubentonii. Molecular Ecology Special Issue: Molecular Detection of Trophic Interactions 23 (15).
  • Kunz T. H., Whitaker Jr. J. O., Wadanoli M. D. 1995. Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia 101 (4): 407-415.
  • Kusch J., Weber C., Idelberger S., Koob T. 2004. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zoologica 53: 113-128.
  • Lacki M. J., Hayes J. P., Kurta A. [red.]. 2007. Bats in Forests: Conservation and Management. Johns Hopkins University Press, Baltimore, Maryland.
  • Lawer E. A., Darkoh E. 2016. Effects of agroecosystems on insect and insectivorous bat activity: a preliminary finding based on light trap and mist net captures. Turkish Journal of Zoology 40: 423-432.
  • Maina J. N. 2000. What it takes to fly: the structural and functional respiratory refinements in birds and bats. Journal of Experimental Biology 203: 3045-3064.
  • Marquis R. J., Whelan C. J. 1994. Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 75: 2007-2014.
  • Marquis W., Marquis. R. J. 2010. Policy implications of ecosystem services provided by birds. Synesis 1: 11-20.
  • Martin E. A., Reineking B., Seo B., Steffan-Dewenter I. 2013. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences 110 (14): 5534-5539.
  • McCracken G. F., Westbrook J. K., Brown V. A., Eldridge M., Federico P., Kunz T. H. 2012. Bats track and exploit changes in insect pest populations. PLoS ONE 7: e43839.
  • McLean J. A., Speakman J. R. 1999. Energy budgets of lactating and non-reproductive Brown Long-Eared Bats (Plecotus auritus) suggest females use compensation in lactation. Functional Ecology 13 (30): 360-372.
  • Mikula P., Čmoková A. 2012. Lepidopterans in the summer diet of Eptesicus serotinus in Central Bohemia. Vespertilio 16: 197-201.
  • Norberg U. M. 1986. Evolutionary convergence in foraging niche and flight morphology in insectivorous aerial-hawking birds and bats. Ornis Scandinavica (Scandinavian Journal of Ornithology) 17 (3): 253-260.
  • Norberg U. M. 1994. Wing design, flight performance, and habitat use in bats. W: Wainwright P. C., Reilly S. M. [red.]. Ecological Morphology: Integrative Organismal Biology, Chicago, IL. University of Chicago Press. 205-239.
  • Norberg U. M., Rayner J. M. V. 1987. Ecological morphology and flight in bats (Mammalia: Chiroptera): wing adaptation, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society of London. Biological Sciences, Series B 316: 335-427.
  • Panyutin K. K. 2001. Qantitive aspects of feeding in Nyctales Noctula. W: Wołoszyn B. W. [red.]. Proceedings of the 8th EBRS. Vol. II. Distribution, Ecology, Paleontology and Systematics of Bats, Chiropterological Information Center. ISEA PAS, Kraków. 272-272.
  • Parsons K. N., Jones G., Greenaway F. 2003. Swarming activity of temperate zone microchiropteran bats: effects of season, time of night and weather conditions. Journal of Zoology 261 (3): 257-264.
  • Patterson B. D., Willig M. R., Stevens R. D. 2003. Trophic strategies, niche partitioning and patterns of ecological organization. Chapter 12. W: Kuntz T. H., Fenton M. B. [red.]. Bat Ecology. University Chicago Press. 536-579.
  • Racey P. A., Swift S. M., Rydell J., Brodie L. 1998. Bats and insects over two Scottish rivers with contrasting nitrate status. Animal Conservation 1 (3): 195-202.
  • Riccucci M., Lanza B. 2014. Bats and insect pest control: a review. Vespertilio 17: 161-169.
  • Rostovskaya M. S., Zhukova D. V., Illarionova A. E., Ustyugova S. V., Borissenko A. V., Sviridov A. V. 2000. Insect prey of the Long-eared bat Plecotus auritus (L.) (Chiroptera: Vespertilionidae) in Central Russia. Russian Entomology Journal 9 (2): 185-189.
  • Ruczyński I., Zahorowicz P., Borowik T., Hałat Z. 2017. Activity patterns of two syntopic and closely related aerial-hawking bat species during breeding season in Białowieża Primaeval Forest. Mammal Research 62 (1): 65-73.
  • Russ J. M., Briffa M., Montgomery W. I. 2003. Seasonal patterns in activity and habitat use by bats (Pipistrellus spp. and Nyctalus leisleri) in Northern Ireland, determined using a driven transect. Journal of Zoology 259 (3): 289-299.
  • Rydell J. 1989. Food Habits of Northern (Eptesicus nilssoni) and Brown Long-Eared (Plecotus auritus) Bats in Sweden. Holarctic Ecology 12 (1): 16-20.
  • Rydell J., Entwistle A., Racey P. A. 1996. Timing of foraging flights of three species of bats in relation to insect activity and predation risk. Oikos 76: 243-252.
  • Sachanowicz K., Ciechanowski M. 2008. Nietoperze Polski. Multico Oficyna Wydawnicza. Warszawa.
  • Sachanowicz K., Ciechanowski M., Piksa K. 2006. Distribution patterns, species richness and status of bats in Poland. Vespertilio 9 (10): 151-173.
  • Santana S. E., Geipel I., Dumont E. R., Kalka M. B., Kalko E. K. V. 2011. All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae). PLoS ONE 6 (12): e28584.
  • Schmidt-Nielsen K. 1972. Locomotion: Energy Cost of Swimming, Flying, and Running. Science 177 (4045): 222-228.
  • Schofield H., Fitzsimmons P. 2004. The importance of woodlands for bats. Managing woodland and their mammals. Proceedings of a symposium organized jointly by The Mammal Society and the Forestry Commission.
  • Sekercioglu C. H. 2006. Increasing awareness of avian ecological function. Trends in Ecology & Evolution 21 (8): 464-471.
  • Shiel C. B., Duvergé P. L., Smiddy P., Fairley J. S. 1998. Analysis of the diet of Leisler’s bat (Nyctalus leisleri) in Ireland with some comparative analyses from England and Germany. Journal of Zoology 246 (4): 417-425.
  • Shiel C. B., Shiel R. E., Fairley J. S. 1999. Seasonal changes in the foraging behaviour of Leisler’s bats (Nyctalus leisleri) in Ireland as revealed by radio-telemetry. Journal of Zoology 249 (3): 347-358.
  • Siemers B. M., Swift S. M. 2005. Differences in sensory ecology contribute to resource partitioning in the bats Myotis Bechsteinii and Myotis nattereri (Chiroptera: Vespertilionidae). Behavioral Ecology and Sociobiology 59 (3): 373-380.
  • Swift S., Racey P. 2002. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behavioral Ecology and Sociobiology 52 (5): 408-416.
  • Szujecki A. 1998. Entomologia leśna. Wydawnictwo SGGW, Warszawa.
  • Thomas S. P., Suthers R. A. 1972. The physiology and energetics of bat flight. Journal of Experimental Biology 57: 317-335.
  • Threlfall C. G., Law B., Banks P. B. 2012. Influence of landscape structure and human modifications on insect biomass and bat foraging activity in an urban landscape. PLoS ONE 7(6): e38800.
  • Van Bael S. A., Bichier P., Greenberg R. 2007. Bird predation on insects reduces damage to the foliage of cocoa trees (Theobroma cacao) in western Panama. Journal of Tropical Ecology 23 (6): 715-719.
  • Wanger T. C., Darras K., Bumrungsri S., Tscharntke T., Kleinbe A. M. 2014. Bat pest control contributes to food security in Thailand. Biological Conservation 171: 220-223.
  • Węgiel A., Grzywiński W., Węgiel J. 2016. Ochrona nietoperzy w lasach gospodarczych. Studia i Materiały CEPL 49A: 177-184.
  • Whelan C. J., Wenny D. G., Marquis R. J. 2010. Policy implications of ecosystem services provided by birds. Synesis 1: 11-20.
  • Wickramasinghe L. P. S., Harris G. J., Vaughan N. 2003. Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. Journal of Applied Ecology 40: 984-993.
  • Williams-Guillén K., Perfecto I., Vandermeer J. 2008. Bats Limit Insects in a Neotropical Agroforestry System Science 320 (5872): 70.
  • Winter C. C. V. 1998. Energetic cost of hovering flight in nectar-feeding bats (Phyllostomidae: Glossophaginae) and its scaling in moths, birds and bats. Journal of Comparative Physiology 169 (1): 38-48.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-154581ad-7d51-4379-8320-3e23c9ae4abc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.