PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 31 | 1 |

Tytuł artykułu

Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee)

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

The objective of this article is to study the effect of 5-aminolevulinic acid (ALA) and enhanced chlorophyll content, antioxidative enzymes and photosynthesis rate by foliar application of ALA. We evaluated three concentrations (control-distilled water, T1-50 mg l⁻¹, T2-150 mg l⁻¹, T3-250 mg l⁻¹) of ALA and seven cultivars, ‘‘Sanchidaye’’ (Sa-1), ‘‘Lichuandasuomian’’ (Li-1), ‘‘Aijiaohuang’’ (Ai-1), ‘‘Qingyou’’ No. 4 (Qi-1), ‘‘Aikang’’ No. 5 (Ak-1), ‘‘Hanxiao’’ (Ha-1) and ‘‘Shulv’’ (Sl⁻¹). ‘‘Ak-1’’ showed strongest response of POD (peroxidase) enzyme activity (0.4 U g⁻¹ min⁻¹) in 250 mg l⁻¹ ALA solution. The highest CAT (catalase) activity (0.8 U g⁻¹ min⁻¹) after administration of 250 mg l⁻¹ ALA was observed in ‘‘Li-1’’. Meanwhile, highest (1.42 mg l⁻¹) total chlorophyll content was also observed in ‘‘Ak-1’’, when leaves were treated in 50 mg l⁻¹ ALA, ‘‘Li-1’’ and ‘‘Ai-1’’ showed strongest response of specific activity of superoxide dismutase (SOD) in 50 mg l⁻¹ and 50 mg l⁻¹ ALA. Two hundred and fifty milligram per milliliter of ALA-treatment significantly improved the net photosynthetic rate.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

31

Numer

1

Opis fizyczny

p.51-57,fig.,ref.

Twórcy

autor
  • State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang, 210095 Nanjing, China
autor
  • State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang, 210095 Nanjing, China
autor
  • College of Horticulture, Nanjing Agricultural University, Weigang, 210095 Nanjing, China
autor
  • State Key Lab of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Weigang, 210095 Nanjing, China

Bibliografia

  • Aebi HE (1983) Catalase. In: Bergmeyer HU, Bergmeyer J, Grabl M (eds) Methods of enzymatic analysis, vol III, 3rd edn. Verlage Chemie Gmbh, Weinheim, pp 273–286
  • Al-Khateeb SA, Okawara R, Al-Khateeb AA, Al-Abdoulhady IA (2001) Effect of ALA on fruit yield and quality of date palm ‘‘CV. Khalas’’. In: Second international conference on date palms, Al-Ain, UAE, March 25–27, pp 102–109
  • Anderson JA (2002) Catalase activity, hydrogen peroxide content and thermo tolerance of pepper leaves. Sci Hortic 95:277–284
  • Arnon DI (1949) Copper enzymes in isolated chloroplast: polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1–15
  • Bailly C (2004) Active oxygen species and antioxidants in seed biology. Seed Sci Res 14:93–107
  • Boo YC, Jung J (1999) Water deficit-induced oxidative stress and antioxidant defenses in rice plants. J Plant Physiol 155:255–261
  • Bradford MM (1976) A rapid sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem 72:248–254
  • Brunham BF, Lascelles J (1963) Control of porphyrin biosynthesis through a negative-feedback mechanism. Studies with preparations of 5-aminolevulate synthetase and B-ALA dehydratase from Rhodopseudomonas spheroides. Biochem J 87:462–472
  • Beyer WF, Fridowich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566
  • Feierabend J (1977) Capacity for chlorophyll synthesis in heat bleached 70S ribosome-deficient rye leaves. Planta 135:83–88
  • Granick S (1961) Magnesium protoporphyrin monoester and protoporphyrin monomethyl ester in chlorophyll biosynthesis. J Biol Chem 236:1168–1172
  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content and plant growth. Biosci Biotech Biochem 61(2):2025–2028
  • Hotta Y, Tanaka T, Bingshan L, Takeuchi Y, Konnai M (1998) Improvement of cold resistance in rice seedlings by 5-aminolevulinic acid. J Pestic Sci 23:29–33
  • Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M, Al-Khateeb SAR (2004) Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul 22(2):109–114
  • Ilag LL, Kumar AM, Söll D (1994) Light regulation of chlorophyll biosynthesis at the leve1 of 5-aminolevulinate formation in Arabidopsis. Plant Cell 6:265–275
  • Jacobs NJ (1977) Biosynthesis of heme. In: Neilands JB (ed) Microbial iron metabolism. Academic Press, New York, pp 125–148
  • Jeffrey AA, Sonali RP (2004) Protein aggregation, radical scavenging capacity, and stability of hydrogen peroxide defense systems in heat stressed Vinca and sweet pea leaves. J Am Soc Hortic Sci 129(1):54–59
  • Larkcom J (1991) Oriental vegetables. John Murray (Publishers) Ltd, London
  • Larson RA (1988) The antioxidants of higher plants. Phytochemistry 27:969–978
  • Li BR (1985) Varietal trial on Pak-choi. ARC Training, Report 1–5
  • MacRae EA, Ferguson IB (1985) Changes in catalase activity and hydrogen peroxide concentration in plants in response to low temperature. Physiol Plant 65:51–56
  • Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinaciao leracea). J Plant Physiol 160:1085–1091
  • Nguyen HT, Joshi PC (1992) Molecular strategies for the genetic dissection of water and high-temperature stress adaptation in cereal crops. In: Proceedings of an international symposium on the adaptation of food crops to temperature and water stress, 13–18 August 1992, Taipei, Taiwan, pp 1–19
  • Putter J (1974) Peroxidases. In: Bergmeyer HU (ed) Methods of enzymatic analysis. Verlag Chemie, Weinheim, pp 685–690
  • Rebeiz CA, Montazer ZA, Hoppen H, Wu SM (1984) Photodynamic herbicide. I. Concept and phenomenology. Enzyme Microb Technol 6:390–401
  • Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12
  • Scandalios JG, Tsaftaris AS, Chandlee JM, Skadsen RM (1984) Expression of the developmentally regulated catalase (Cat) genes in maize. Dev Genet 4:281–293
  • Senge MO (1993) Recent advances in the biosynthesis and chemistry of chlorophylls. Photochem Phytobiol 57:189–206
  • Shemin D, Russell CS (1953) 5-Aminolevulinic acid, its role in the biosynthesis of porphyrins and purines. J Am Chem Soc 75:4873–4874
  • Sairam RK, Srivastava GC (2000) Induction of oxidative stress and antioxidant activity by hydrogen peroxide treatment in tolerant and susceptible wheat genotypes. Biol Plant 43:381–386
  • Tanaka T, Takahashi K, Hotta T, Takeuchi Y, Konnai M (1992) Promotive effects of 5-aminolevulinic acid on yield of several crops. In: Proceedings of the 19th annual meeting of plant growth regulator Society of America, San Francisco. Plant Growth Regulator Society of America, Washington DC, pp 237–241
  • Tanaka Y, Tanaka A, Tsuji H (1992) Stabilization of apoproteins of light-harvesting chlorophyll-a/b protein complex by feeding 5-aminolevulinic acid under intermittent illumination. Plant Physiol Biochem 30:365–370
  • Tanaka Y, Tanaka A, Tsuji H (1993) Effects of 5-aminolevulinic acid on the accumulation of chlorophyll b and apoproteins of the light-harvesting chlorophyll a/b-protein complex of photosystem II. Plant Cell Physiol 34:465–472
  • Van Hasselt PR, Strikwerda JT (1976) Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors. Plant Physiol 37:253–257
  • Van Huystee RB (1976) A study of peroxidase synthesis by means of double labeling and affinity chromatography. Can J Bot 54:876–880
  • Van Huystee RB (1977) Porphyrin and peroxidase synthesis in cultured peanut cells. Can J Bot 55:1340–1344
  • Von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057
  • Wang LJ, Jiang WB, Zhang Z, Yao QH, Matsui H, Ohara H (2003) Biosynthesis and physiological activities of 5-aminolevulinic acid (ALA) and its potential application in agriculture. Plant Physiol Commun 39:185–192
  • Wang LJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedling under low light and chilling stress conditions. Physiol Plant 121:258–264
  • Wang LJ, Jiang WB, Liu H, Liu WQ, Kang L, Hou XL (2005) Promotion by 5-aminolevulinic acid of germination of Pakchoi (Brassica camestris ssp. chinensis var. communis Tsen et Lee) seeds under salt stress. J Integr Plant Biol 47(9):1084–1091
  • Wardman P, Candeias LP (1996) Fenton chemistry: an introduction. Radiat Res 145:523–531
  • Watanabe K, Tanaka T, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedling with 5-aminolevulinic acid. Plant Growth Regul 32:97–101
  • Watanabe KE, Nishihara Watanabe S, Tanaka T, Takahashi K, Takeuchi Y (2006) Enhancement of growth and fruit maturity in 2-year-old Grapevines cv. Delaware by 5-aminolevulinic acid. Plant Growth Regul 49(1):35–42
  • Zivile L, Honorata D, Zivile T, Zilvinas A, Audrone M, Henrikas N (2006) New approach to the fungal decontamination of wheat used for wheat sprouts: effects of aminolevulinic acid. Int J Food Microbiol 116(1):153–158

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1540c4c5-2b18-40f8-8b13-6bb2d5f50713
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.