PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 77 |

Tytuł artykułu

Above- and below-ground tree parameters and their development after modelling of thinning in young elm stands

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
During the last century almost two-thirds of all elms were lost due to the Dutch elm disease. Therefore, elms are an endangered species with a lasting lack of knowledge about ecosystem functions of elms in forest stands. The study describes several above- and below-ground tree parameters and their changes after simulation of thinning in one young forest stand with dominant Ulmus laevis Pall. in the Czech Republic. The distribution of the leaves was measured using the ‘cloud’ technique. The absorptive root area was measured with the aid of the modified earth impedance method to evaluate below-ground tree parameters. Using allometric equations, it was possible to calculate certain tree parameters of individual trees as well as the entire forest stand. The modelling of four thinning intensities (low, medium, high and very high) helped to establish the changes of these tree parameters after treatment. The leaf area index of the stand was 5.6, the absorptive root area index was 1.7 and the total biomass of foliage was 8.5 Mg ha–1 prior to the treatment. The absorptive root area amounted to 30% of the foliage area. The exponential models were developed to predict the above- and below-ground tree parameters. Under the different thinning intensities, the following were found: a negative correlation with the number of trees for the leaf area index, the foliage biomass and the absorptive root area index. This knowledge is important in the process of maintaining the presence of endangered elms in forest stands and in ecosystem services (e.g. carbon storage) throughout Europe.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Opis fizyczny

p.77–90,fig.,ref.

Twórcy

Bibliografia

  • Alberti G, Candido P, Peressotti A, Turco S, Piussi P & Zerbi G (2005) Aboveground biomass relationships for mixed ash (Fraxinus excelsior L. and Ulmus glabra Hudson) stands in Eastern Prealps of Friuli Venezia Giulia (Italy). Annals of Forest Science Sciences 62: 831–836. doi:http://dx.doi.org/10.1051/forest:2005089.
  • Aubrecht L, Staněk Z & Koller J (2006) Electrical measurement of the absorption surfaces of tree roots by the earth impedance method: 1. Theory. Tree Physiology 26: 1105–1112. doi:http://treephys.oxfordjournals.org/content/26/9/1113.full.pdf.
  • Baldocchi D, Hutchinson B, Matt D & McMillen R (1986) Seasonal variation in the statistics of photosynthetically active radiation penetration in an oak-hickory forest. Agricultural and Forest Meteorology 36: 343–361. doi:10.1016/0168-1923(86)90013-4.
  • Barbosa P & Wagner MR (1989) Introduction to forest and shade tree insects. San Diego, Academic Press, USA.
  • Bodin P & Franklin O (2012) Efficient modeling of sun/shade canopy radiation dynamics explicitly accounting for scattering. Geoscientific Model Development 5: 535–541. doi:10.5194/gmd-5-535-2012.
  • Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of the current Duch elm disease pandemics. Mycopathologia 115: 151–161. doi:10.1007/BF00462219.
  • Burnham KP & Anderson DR (2002) Model selection and multi-model inference: a practical information-theoretic approach. 2nd ed. Springer-Verlag, New York, Berlin, Heidelberg, Germany.
  • Butler AJ, Barbier N, Čermák J, Koller J, Thornily C, McEvoy C, Nicoll B, Perks MP, Grace J & Meir P (2010) Estimates and relationships between aboveground and belowground resource exchange surface areas in a Sitka spruce managed forest. Tree Physiology 30: 705–714. doi:10.1093/treephys/tpq022.
  • Čermák J (1989) Solar equivalent leaf area: an efficient biometrical parameter of individual leaves, trees and stands. Tree Physiology 5: 269–289. doi:10.1093/treephys/5.3.269.
  • Čermák J & Kučera J (1990) Scaling up transpiration data between trees, stands and watersheds. Silva Carelica 15: 101–120.
  • Čermák J & Michálek J (1991) Selection of sample trees in forest stands using the quantils of total. Lesnictví 37: 49–60.
  • Čermák J (1998) Leaf distribution in large trees and stands of the floodplain forest in southern Moravia. Tree Physiology 18: 727–737. doi:http://treephys.oxfordjournals.org/content/18/11/727.full.pdf.
  • Čermák J & Prax A (2001) Water balance of a Southern Moravian floodplain forest under natural and modified soil water regimes and its ecological consequences. Annals of Forest Science 58: 15–29. doi:10.1051/forest:2001100.
  • Čermák J, Kučera J & Nadezhdina N (2004) Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees 18: 529–546. doi:10.1007/s00468-004-0339-6.
  • Čermák J, Ulrich R, Staněk Z, Koller J & Aubrecht L (2006) Electrical measurement of tree root absorbing surfaces by the earth impedance method: 2. Verification based on allometric relationships and root severing experiments. Tree Physiology 26: 1113–1121. doi:10.1093/treephys/26.9.1113.
  • Čermák J, Gašpárek J, De Lorenzi F & Jones HG (2007) Stand biometry and leaf area distribution in an old olive grove at Andria, southern Italy. Annals of Forest Science 64: 491–501. doi:https://hal.archives-ouvertes.fr/hal-00884101/document. Or https://hal.archives-ouvertes.fr/hal-00884101.
  • Čermák J, Tognetti R, Nadezhdina N & Raschi A (2008) Stand structure and foliage distribution in Quercus pubescens and Quercus cerris forests in Tuscany (central Italy). Forest Ecology and Management 255: 1810–1819. doi:10.1016/j.foreco.2007.12.003.
  • Čermák J & Nadezhdina N (2011) Field studies of whole-tree leaf and root distribution and water relations in several European forests. Chapter 4: Forest Management and the Water Cycle (ed. by M Bredemeier, S Cohen, DL Godbold, E Lode, V Pichler & P Schleppi) Springer Netherlands, pp. 65–88. doi:10.1007/978-90-481-9834-4.
  • Čermák J, Cudlín P, Gebauer R, Børja I, Martinková M, Stanĕk Z, Koller J, Neruda J & Nadezhdina N (2013a) Estimating the absorptive root area in Norway spruce by using the common direct and indirect earth impedance methods. Plant and Soil 372: 401–415. doi:10.1007/s11104-013-1740-y.
  • Čermák J, Simon J, Káňová H & Tichá S (2013b) Absorptive root areas of large pedunculate oak trees differing in health status along a road in South Bohemia, Czech Republic. Urban Forestry & Urban Greening 12: 238–245. doi:10.1016/j.ufug.2013.02.003.
  • Čermák J, Nadezhdina N, Nadezhdin V, Staněk Z, Koller J, Trcala M & Kantor P (2014a) Absorptive root area and stem resistivity in whole trees of contrasting structure and size–improvement of methods. Plant and Soil 383: 257–273. doi:10.1007/s11104-014-2126-5.
  • Čermák J, Nadezhdina N, Trcala M & Simon J (2014b) Open field-applicable instrumental methods for structural and functional assessment of whole trees and stands. iForest-Biogeosciences and Forestry 8: 226–278. doi:10.3832/ifor1116-008.
  • Clark DA, Brown S, Kicklighter DW, Chambers JQ, Thomlinson JR & Ni J (2001) Measuring net primary production in forests: Concepts and field methods. Ecological Applications 11: 356–370. doi:10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2.
  • Devilliers P & Devilliers-Terschuren J (1996) A classification of Palaearctic habitats. Nature and environment 78. Council of Europe Publishing, Strasbourg.
  • Hemery GE, Clark JR, Aldinger E, Claessens H, Malvolti ME, O’connor E, Raftoyannis Y, Savill PS & Brus R (2010) Growing scattered broadleaved tree species in Europe in a changing climate: a review of risks and opportunities. Forestry 83: 65–81. doi:10.1093/forestry/cpp034.
  • Hoffmann CW & Usoltsev VA (2002) Tree-crown biomass estimation in forest species of the Ural and of Kazakhstan. Forest Ecology and Management 158: 59–69. doi:10.1016/S0378-1127(00)00669-1.
  • Hubálek Z, Haluzka J & Juřicová Z (2003) Longitudinal surveillance of the tick Ixodes ricinus for borreliae. Medical and Veterinary Entomology 17: 46–51. doi:10.1046/j.1365-2915.2003.00408.x.
  • Chytrý M, Kučera T, Kočí M, Grulich V & Lustyk P (2001) Katalog biotopů České republiky. Agentura ochrany přírody a krajiny ČR, Praha.
  • Jassim HK, Foster HA & Fairhurst CP (1990) Biological control of Dutch elm disease: Larvicidal activity of Trichoderma harzianum, Trichoderma polysporum and Scytalidium lignicola in Scolytus scolytus and Scolytus multistriatus reared in artificial culture. Annals of Applied Biology 117: 187–196. doi:10.1111/j.1744-7348.1990.tb04206.x.
  • Jenkins JC, Chojnacky DC, Heath LS & Birdsey RA (2003) National-scale biomass estimators for United States tree species. Forest Science 49: 12–35.
  • Kellomäki S, Oker-Blöm P & Kuuluvainen T (1985) The effect of crown and canopy structure on light interception and distribution in a tree stand: Crop physiology of forest trees. (ed. by PMA Tigerstedt, P Puttonen & V Koski) Helsinki University Press, Helsinki, pp. 107–115.
  • Klimo E, Hager H, Matič S, Anič I & Kulhavý J (2008) Floodplain forests of the temperate zone of Europe. Lesnická práce, Kostelec nad Černými lesy.
  • Körner C (1994) Biomass fractionation in plants: a reconsideration of definitions based on plant functions: A whole plant perspective on carbon–nitrogen interactions (ed. by J Roy & E Garnier) SBP Academic Publishing, The Hague, pp. 173–185.
  • Kull O, Broadmeadow M, Kruijt B & Meir P (1999) Light distribution and foliage structure in an oak canopy. Trees 14: 55–64. doi:10.1007/s004680050209.
  • Lambert MC, Ung CH & Raulier F (2005) Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research 35: 1996–2018. doi:10.1139/x05-112.
  • Lehtonen A (2005) Estimating foliage biomass in Scots pine Pinus sylvestris and Norway spruce Picea abies plots. Tree Physiology 25: 803–811. doi:10.1093/treephys/25.7.803.
  • Liski J, Perruchoud D & Karjalainen T (2002) Increasing carbon stocks in the forest soils of western Europe. Forest Ecology and Management 169: 159–175. doi:10.1016/S0378-1127(02)00306-7.
  • Mackenthun GL (2013) Elm losses and their causes over a 20 year period–a long-term study of ulmus in Saxony, Germany: The elms after 100 years of Dutch elm disease. Third International Elm Conference, October 9 – 11, 2013, Florence, Italy (ed. by R. Manzo) CNR-IPP Institute of Plant Protection, Italy.
  • Magee L (1990) R2 measures based on Wald and likelihood ratio joint significance tests. American Statistical Association 44: 250–253. doi:http://dx.doi.org/10.1080/00031305.1990.10475731.
  • Masera OR, Garza-Caligaris JF, Kanninen M, Karjalainen T, Liski J, Nabuurs GJ, Pussinen A, Jong BHJ & Mohren GMJ (2003) Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecological Modelling 164: 177–199. doi:10.1016/S0304-3800(02)00419-2.
  • Matula R, Damborská L, Nečasová M, Geršl M & Šrámek M (2015) Measuring biomass and carbon stock in resprouting woody plants. PloS One 10: e0118388. doi:10.1371/journal.pone.0118388.
  • Nabuurs GJ, Garza-Caligaris JF, Kanninen M, Karjalainen T, Lapvetelainen T, Liski J, Masera O, Mohren GMJ, Olgín M, Pussinen A & Schelhaas MJ (2002) Manual of modelling framework for quantifying carbon sequestration in forest ecosystems and wood products. Alterra, Wageningen.
  • MZe ČR (2006) Zpráva o stavu lesa a lesního hospodářství České republiky v roce 2005. Ministerstvo zemedělství, Praha.
  • Nagelkerke NJD (1991) A note on a general definition of the coefficient of determination. Biometrika 78: 691–692. doi:http://links.jstor.org/sici?sici=0006-3444%28199109%2978%3A3%3C691%3AANOAGD%3E2.0.CO%3B2-V.
  • Paine CET, Marthews TR, Vogt DR, Purves D, Rees M, Hector A & Turnbull LA (2012) How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods in Ecology and Evolution 3: 245–256. doi:10.1111/j.2041-210X.2011.00155.x.
  • Parresol BR (1999) Assessing tree and stand biomass: a review with examples and critical comparisons. Forest Science 45: 573–593.
  • Peňáz J (1996) Trees classification: Silviculture in password (ed. by V Tesař) Ediční středisko MZLU v Brně.
  • Plíva K (1984) Typological classification of Czechoslovak forests. Lesprojekt, Brandys n/L.
  • Poleno Z & Vacek S (2007) Silviculture I. Forest management based on ecological principles. Lesnická práce. Kostelec nad Černými lesy.
  • Pontailler JY, Ceulemans R, Guittet J & Mau F (1997) Linear and non-linear functions of volume index to estimate woody biomass in high density young poplar stands. Annales des Sciences Forestières 54: 335–345. doi:http://dx.doi.org/10.1051/forest:19970402.
  • Quitt E (1971) Klimatické oblasti Č eskoslovenska. Studia Geographica 16. GU ČSAV v Brně, Academia, Praha.
  • R Development Core Team – R. (2012) A language and environment for statistical computing. Vienna, Austria: the R Foundation for Statistical Computing. http://www.R-project.org/.
  • Ruel JC, Larouche C & Achim A (2003) Changes in root morphology after precommercial thinning in balsam fir stands. Canadian Journal of Forest Research 33: 2452–2459.
  • Santini A, La Porta N, Ghelardini L & Mittempergher L (2008) Breeding against Dutch elm disease adapted to the Mediterranean climate. Euphytica 163: 45–56. doi:10.1007/s10681-007-9573-5.
  • Seidel D, Leuschner Ch, Scherber Ch, Beyer F, Wommelsdorf T, Cashman MJ & Fehrmann L (2013) The relationship between tree species richness, canopy space exploration and productivity in a temperate broad-leaf mixed forest. Forest Ecology and Management 310: 366–374. doi:http://dx.doi.org/10.1016/j.foreco.2013.08.058.
  • Shipley B & Meziane D (2002) The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology 16: 326–331. doi:10.1046/j.1365-2435.2002.00626.x.
  • Schulze ED, Schilling K & Nagarajah S (1983) Carbohydrate partitioning in relation to whole plant production and water use of Vigna unguiculata L.Walp. Oecologia 58: 169–177. doi:10.1007/BF00399213.
  • Schroeder P, Brown S, Mo J, Birdsey R & Cieszewski C (1997) Biomass estimation for temperate broadleaf forests of the United States using inventory data. Forest Science 43: 424–434.
  • Sperry JS, Adler FR, Campbell GS & Comstock JP (1998) Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant, Cell and Environment 21: 347–359. doi:10.1046/j.1365-3040.1998.00287.x.
  • Staněk Z (1997) Physical aspects of resistivity measurements in plants from viewpoint of their ecological applications. Habilitation work, Department of Physics, Technical Univ. Prague, Czech Republic.
  • Šály R. 1978. Póda – základ lesnej produkcie. Příroda, Bratislava.
  • Šrámek M & Čermák J (2012) The vertical leaf distribution of Ulmus laevis Pall. Trees 26: 1781–1792. doi:10.1007/s00468-012-0747-y.
  • Thimonier A, Šedivý I & Schleppi P (2010) Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research 129: 543–562. doi:10.1007/s10342-009-0353-8.
  • Urban J, Tatarinov F, Nadezhdina N, Čermák J & Ceulemans R (2009) Crown structure and leaf area of the understorey species Prunus serotina. Trees 23: 391–399. doi:10.1007/s00468-008-0288-6.
  • Urban J, Bequet R & Mainiero R (2011) Assessing the applicability of the earth impedance method for in situ studies of tree root systems. Journal of Experimental Botany 62: 1857–1869. doi:10.1093/jxb/erq370.
  • Vašíček F (1980) Consequences of changes in water regime on ecological conditions, structures and biomass of understory layer of plants and shrubs in the ecosystem of floodplain forest in southern Moravia. Research Report No. VI-2-2/5-1. University Agricultural, Brno.
  • Viewegh J, Kusbach A & Mikeska M (2003) Czech forest ecosystem classification. Journal of Forest Science 49: 74–82.
  • Vincent M, Krause C & Zhang SY (2009) Radial growth response of black spruce roots and stems to commercial thinning in the boreal forest. Forestry 82: 557–571.
  • Vose JM, Sullivan NH, Clinton BD & Bolstad PV (1995) Vertical leaf area distribution, light transmittance, and application of the Beer-Lambert Law in four mature hardwood stands in the southern Appalachians. Canadian Journal of Forest Research 25: 1036–1043. doi:10.1139/x95-113.
  • Vyskot M (1976) Tree story biomass in lowland forests in South Moravia. Rozpravy ČSAV 86. Academia, Praha.
  • Webber JF & Gibbs JN (1984) Colonization of Elm Bark by Phomopsis oblonga. Transactions of the British Mycological Society 82: 348–352.
  • Wilhelm GJ & Rieger H (2013) Naturnahe Waldwirtschaft – mit der QD-Strategie. Eugen Ulmer KG, Stuttgart.
  • Zlatník A (1976) Forest phytocenology. SZN, Praha.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-149f8787-70c9-47ba-8440-ecdfb5d2336f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.