PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2018 | 77 | 3 |

Tytuł artykułu

Using three-dimensional digital models to establish alveolar morphotype

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background: The aim of the study was to propose a classification of alveolar morphotype and assess a relationship between extraction/non-extraction orthodontic treatment and changes to the alveolar process. Materials and methods: Seventy-five subjects (mean age = 23.2, SD = 5.1) were selected. Areas of the sections of the alveolar process (ASAP) at three different levels (0, 2, and 4 mm) were measured on pre- and post-treatment three-dimensional digital models. Method reliability was analysed using Dahlberg’s formula, intraclass correlation coefficient, and paired t-tests. Results: The mean ASAP was smallest at level 0 and largest at level 4. Pre-treatment ASAP < 773 mm², < 863.9 mm², and < 881.1 mm² at levels 0, 2, and 4 mm, respectively, should be described as a “thin” alveolar morphotype. Regression models showed that pre-treatment ASAP was a predictor of the change of the alveolus during treatment only at level 2. Conclusions: Patients for whom pre-treatment ASAP is < 773 mm², < 863.9 mm², and < 881.1 mm² at levels 0, 2, and 4 mm, respectively, should be described as having a “thin” alveolar morphotype. In these patients, extraction treatment, associated with a decrease in the alveolus area, should be exercised with caution. (Folia Morphol 2018; 77, 3: 536–542)

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

77

Numer

3

Opis fizyczny

p.536–542,fig.,ref.

Twórcy

  • Department of Orthodontics and Cleft Defects, Third Faculty of Medicine Charles University and University Hospital Kralovske Vinohrady, Srobarova 50, 100 34 Prague, Czech Republic
  • Department of Orthodontics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
autor
  • Department of Orthodontics and Cleft Defects, Third Faculty of Medicine Charles University and University Hospital Kralovske Vinohrady, Srobarova 50, 100 34 Prague, Czech Republic
autor
  • Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
autor
  • Department of Orthodontics and Cleft Defects, Third Faculty of Medicine Charles University and University Hospital Kralovske Vinohrady, Srobarova 50, 100 34 Prague, Czech Republic

Bibliografia

  • 1. Aarts BE, Convens J, Bronkhorst EM, et al. Cessation of facial growth in subjects with short, average, and long facial types - Implications for the timing of implant placement. J Craniomaxillofac Surg. 2015; 43(10): 2106–2111, doi: 10.1016/j.jcms.2015.10.013, indexed in Pubmed: 26548528.
  • 2. Ahn HW, Moon SC, Baek SH. Morphometric evaluation of changes in the alveolar bone and roots of the maxillary anterior teeth before and after en masse retraction using cone-beam computed tomography. Angle Orthod. 2013; 83(2): 212–221, doi: 10.2319/041812-325.1, indexed in Pubmed: 23066654.
  • 3. Bailey LT, Esmailnejad A, Almeida MA. Stability of the palatal rugae as landmarks for analysis of dental casts in extraction and nonextraction cases. Angle Orthod. 1996; 66(1): 73–78, doi: 10.1043/0003-3219(1996)066<0073:SOTPR A>2.3.CO;2, indexed in Pubmed: 8678349.
  • 4. Baloul S. Osteoclastogenesis and osteogenesis during tooth movement. Tooth Movement. 2016; 18: 75–79, doi: 10.1159/000351901.
  • 5. Duterloo HS. The impact of orthodontic treatment procedures on the remodelling of alveolar bone. Orthodontische Studieweek. Ned Ver Orthod Studie. 1975: 5–21.
  • 6. Grauer D, Cevidanes LH, Tyndall D, et al. Registration of orthodontic digital models. Craniofac Growth Ser. 2011; 48: 377–391, indexed in Pubmed: 26549917.
  • 7. Güleç A, Kaçıra BK, Kütahya H, et al. Morphometric analysis of the lumbar vertebrae in the Turkish population using three-dimensional computed tomography: correlation with sex, age, and height. Folia Morphol. 2017; 76(3): 433–439, doi: 10.5603/FM.a2017.0005, indexed in Pubmed: 28150271.
  • 8. Handelman CS. The anterior alveolus: its importance in limiting orthodontic treatment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod. 1996; 66(2): 95–109; discussion 109, doi: 10.1043/0003-3219(1996)066<0095:TAAIII>2.3.CO;2, indexed in Pubmed: 8712499.
  • 9. Krishnan V, Davidovitch Z. On a path to unfolding the biological mechanisms of orthodontic tooth movement. J Dent Res. 2009; 88(7): 597–608, doi: 10.1177/0022034509338914, indexed in Pubmed: 19641146.
  • 10. Kuijpers MAR, Chiu YT, Nada RM, et al. Three-dimensional imaging methods for quantitative analysis of facial soft tissues and skeletal morphology in patients with orofacial clefts: a systematic review. PLoS One. 2014; 9(4): e93442, doi: 10.1371/journal.pone.0093442, indexed in Pubmed: 24710215.
  • 11. Marinković S, Milić I, Djorić I, et al. Morphometric multislice computed tomography examination of the craniovertebral junction in neck flexion and extension. Folia Morphol. 2017; 76(1): 100–109, doi: 10.5603/FM.a2016.0037, indexed in Pubmed: 27830891.
  • 12. Nouri M, Abdi AH, Farzan A, et al. Measurement of the buccolingual inclination of teeth: manual technique vs 3-dimensional software. Am J Orthod Dentofacial Orthop. 2014; 146(4): 522–529, doi: 10.1016/j.ajodo.2014.06.018, indexed in Pubmed: 25263155.
  • 13. Pachêco-Pereira C, De Luca Canto G, Major PW, et al. Variation of orthodontic treatment decision-making based on dental model type: A systematic review. Angle Orthod. 2015; 85(3): 501–509, doi: 10.2319/051214-343.1, indexed in Pubmed: 25098186.
  • 14. Rischen RJ, Breuning KH, Bronkhorst EM, et al. Records needed for orthodontic diagnosis and treatment planning: a systematic review. PLoS One. 2013; 8(11): e74186, doi: 10.1371/journal.pone.0074186, indexed in Pubmed: 24265669.
  • 15. Sadek MM, Sabet NE, Hassan IT, et al. Alveolar bone mapping in subjects with different vertical facial dimensions. Eur J Orthod. 2015; 37(2): 194–201, doi: 10.1093/ejo/cju034, indexed in Pubmed: 25114124.
  • 16. Salti L, Holtfreter B, Pink C, et al. Estimating effects of craniofacial morphology on gingival recession and clinical attachment loss. J Clin Periodontol. 2017; 44(4): 363–371, doi: 10.1111/jcpe.12661, indexed in Pubmed: 27930822.
  • 17. Sarikaya S, Haydar B, Ciğer S, et al. Changes in alveolar bone thickness due to retraction of anterior teeth. Am J Orthod Dentofacial Orthop. 2002; 122(1): 15–26, indexed in Pubmed: 12142888.
  • 18. Swasty D, Lee J, Huang JC, et al. Cross-sectional human mandibular morphology as assessed in vivo by conebeam computed tomography in patients with different vertical facial dimensions. Am J Orthod Dentofacial Orthop. 2011; 139(4 Suppl): e377–e389, doi: 10.1016/j.ajodo.2009.10.039, indexed in Pubmed: 21435546.
  • 19. Thilander B, Nyman S, Karring T, et al. Bone regeneration in alveolar bone dehiscences related to orthodontic tooth movements. Eur J Orthod. 1983; 5(2): 105–114, indexed in Pubmed: 6574916.
  • 20. Wainwright WM. Faciolingual tooth movement: its influence on the root and cortical plate. Am J Orthod. 1973; 64(3): 278–302, indexed in Pubmed: 4199008.
  • 21. Wennström JL. Mucogingival considerations in orthodontic treatment. Semin Orthod. 1996; 2(1): 46–54, indexed in Pubmed: 9161283.
  • 22. Wise GE, King GJ. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res. 2008; 87(5): 414–434, doi: 10.1177/154405910808700509, indexed in Pubmed: 18434571.
  • 23. Zhang S, Wang X, Ren X, et al. Applications of digital technology for the morphological study of C3-C7 vertebral arch pedicle in children. Folia Morphol (Warsz). 2017; 76(3): 426–432, doi: 10.5603/FM.a2017.0003, indexed in Pubmed: 28150269.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1333b148-e54a-429d-9556-e47a22e4e262
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.