PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 43 | 2 |

Tytuł artykułu

Characterization of reference genes in rare minnow, Gobiocypris rarus (Actinopterygii: Cypriniformes: Cyprinidae), in early postembryonic development and in response to EDCs treatment

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Background. Endocrine disrupting chemicals (EDCs) are natural and anthropogenic compounds discharged into the environment known to disrupt the endocrine system of humans and animals by mimicking functions of steroids in vivo. Many important events occurring during early postembryonic development, in relation to the gene expression attracted our attention. Quantitative real-time PCR (qRT-PCR) is a sensitive and highly reproducible method for gene expression analysis, with gene expression levels quantified by normalization to reference gene. The aim of this study was to select the suitable reference gene after EDCs exposure and during early postembryonic development. Materials and Methods. For the study of the fish age effect, juveniles of Gobiocypris rarus Ye et Fu, 1983, were obtained at: 18, 22, 26, 30, 34, 38, 42, 46, and 50 days post fertilization (dpf). For mRNA expression analysis of the juvenile fish after EDCs treatment, the juveniles at 31 dpf were exposed to bisphenol A (BPA) (10 nM) and 17α-ethinylestradiol (EE2) (1 nM), respectively dissolved in dimethyl sulfoxide (DMSO) or solvent (0.001% DMSO, v/v) control group for 3 days. Cq values of the reference genes were obtained using qRT-PCR. The stability of these reference genes was analyzed by BestKeeper, geNorm, and NormFinder software, respectively. The expression of each reference gene was calculated using the 2–ΔCq method. In parallel, the mRNA expressions of cyp19a1b were normalized by the single most/least stable reference gene and the combinations of top-ranked reference genes. Results. In this study, six candidate reference genes, actb, ef1a, gapdh, g6pd, tbp, and tuba1, were chosen to analyze their expression stability in relation to fish age and in the juvenile fish exposed to BPA and EE2. During early postembryonic development of Gobiocypris rarus, actb,ef1a, and gapdh were identified as the most stably expressed reference genes. In the juvenile fish exposed to BPA and EE2 for three days, gapdh, and actb were the most stable. However, g6pd and tuba1 were identified as the least stably expressed genes during the early postembryonic development and under BPA and EE2 exposure. Conclusion. The presently reported study suggested that the mRNA expressions of the reference genes could be affected by chemical exposure or different physiological periods. In addition, it was indicated that stable reference gene should be selected to normalize the target gene expression to assure the correctness and accuracy of the experiment results. The last but not the least, we successfully obtained five commonly used reference genes of Gobiocypris rarus Ye et Fu, 1983, which can be applied in future studies serving as the stable reference gene and providing a broader range of selecting the stable reference gene.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

43

Numer

2

Opis fizyczny

p.127-138,fig.,ref.

Twórcy

autor
  • College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
autor
  • Hospital of Northwest A&F University, Yangling, Shaanxi 712100 China
autor
  • College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China
autor
  • College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100 China

Bibliografia

  • Andersen C.L., Jensen J.L., Řrntoft T.F. 2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64 (15): 5245–5250. DOI:10.1158/0008-5472.CAN-04-0496
  • Brunner A.M., Yakovlev I.A., Strauss S.H. 2004. Validating internal controls for quantitative plant gene expression studies.BMC Plant Biology 4 [paper 14]: [7 pages]. DOI:10.1186/1471-2229-4-14
  • Fernandes J.M.O., Mommens M., Hagen Ř., Babiak I.,Solberg C. 2008. Selection of suitable reference genes for real-time PCR studies of Atlantic halibut development.Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology 150 (1): 23–32. DOI:10.1016/j.cbpb.2008.01.003
  • Fernandez S.V., Russo J. 2010. Estrogen and xenoestrogens In breast cancer. Toxicologic Pathology 38 (1): 110–122. DOI:10.1177/0192623309354108
  • Filby A.L., Tyler C.R. 2007. Appropriate ‘housekeeping’ genes for use in expression profiling the effects of environmental estrogens in fish. BMC Molecular Biology 8 [paper 10]: [13 pages]. DOI: 10.1186/1471-2199-8-10
  • Gloster A., Wu W., Speelman A., Weiss S., Causing C.,Pozniak C., Reynolds B., Chang E., Toma J.G.,Miller F.D.1994. The T alpha 1 alpha-tubulin promoter specifies gene expression as a function of neuronal growth and regeneration in transgenic mice. Journal of Neuroscience 14 (12):7319–7330. DOI: 0270-6474/94/147319-12$05.00/0
  • Haberhausen G., Pinsl J., Kuhn C.-C., Markert-Hahn C.1998. Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. Journal of Clinical Microbiology 36 (3): 628–633.
  • Hayashi H., Nishimoto A., Oshima N., Iwamuro S. 2007.Expression of the estrogen receptor alpha gene in the anal fin of Japanese medaka, Oryzias latipes, by environmental concentration of bisphenol A. Journal of Toxicological Sciences 32 (1): 91–96. DOI: 10.2131/jts.32.91
  • Hilf R., McDonald E., Sartini J., Rector W.D., Richards A.H.1972. Response of uterine glucose-6-phosphate dehydrogenase isoenzymes to estrogen. Endocrinology 91 (1):280–286. DOI: 10.1210/endo-91-1-280
  • Huggett J., Dheda K., Bustin S., Zumla A. 2005. Real-time RTPCR normalisation; strategies and considerations. Genes and Immunity 6 (4): 279–284. DOI: 10.1038/sj.gene.6364190
  • Infante C.,Matsuoka M.P., Asensio E., Cańavate J.P., Reich M.,Manchado M. 2008. Selection of housekeeping genes for gene expression studies in larvae from flatfish using realtime PCR. BMCMolecular Biology 9 [paper 28]: [13 pages].DOI: 10.1186/1471-2199-9-28
  • Jian B., Liu B., Bi Y., HouW.,Wu C., Han T. 2008. Validation of internal control for gene expression study in soybean by quantitative real-time PCR. BMC Molecular Biology 9 [paper 59]: [14 pages]. DOI: 10.1186/1471-2199-9-59
  • Jobling S., Burn R.W., Thorpe K., Williams R., Tyler C.2009. Statistical modeling suggests that antiandrogens In effluents from wastewater treatment works contribute to widespread sexual disruption in fish living in English rivers.Environmental Health Perspectives 117 (5): 797–802. DOI:10.1289/ehp.0800197
  • Kazeto Y., Place A.R., Trant J.M. 2004. Effects of endocrine disrupting chemicals on the expression of CYP19 genes In zebrafish (Danio rerio) juveniles. Aquatic Toxicology 69 (1):25–34. DOI: 10.1016/j.aquatox.2004.04.008
  • Keran E.E., Barker K.L. 1976. Regulation of glucose-6-phosphate dehydrogenase activity in uterine tissue in organ culture.Endocrinology 99 (5): 1386–1397. DOI: 10.1210/endo-99-5-1386
  • KimK.B., SeoK.W.,KimY.J., ParkM., Park C.W.,KimP.Y.,Kim J.I., Lee S.H. 2003. Estrogenic effects of phenolic compounds on glucose-6-phosphate dehydrogenase In MCF-7 cells and uterine glutathione peroxidase in rats.Chemosphere 50 (9): 1167–1173. DOI: 10.1016/S0045-6535(02)00628-8
  • Korsgaard B.,Mommsen T.P. 1993. Gluconeogenesis in hepatocytes of immature rainbow trout (Oncorhynchus mykiss):control by estradiol. General and Comparative Endocrinology 89 (1): 17–27. DOI: 10.1006/gcen.1993.1005
  • Langston W.J., Burt G.R., Chesman B.S., Vane C.H. 2005.Partitioning, bioavailability and effects of oestrogens and xeno-oestrogens in the aquatic environment. Journal of the Marine Biological Association of the United Kingdom 85 (1): 1–31. DOI: 10.1017/S0025315405010787h
  • Li W., Zha J., Spear P.A., Li Z., Yang L., Wang Z. 2009. Changes of thyroid hormone levels and related gene expression in Chinese rare minnow (Gobiocypris rarus) during 3-amino-1,2,4-triazole exposure and recovery. Aquatic Toxicology 92 (1): 50–57. DOI: 10.1016/j.aquatox.2009.01.006
  • Livak K.J., Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCt method. Methods 25 (4): 402–408. DOI: 10. 1006/meth.2001.1262
  • McCurley A.T., Callard G.V. 2008. Characterization of housekeeping genes in zebrafish: male–female differences and effects of tissue type, developmental stage and chemical treatment. BMC Molecular Biology 9 [paper 102]: [12 pages]. DOI: 10.1186/1471-2199-9-102
  • Řvergĺrd A.-C., Nerland A.H., Patel S. 2010. Evaluation of potential reference genes for real time RT-PCR studies In Atlantic halibut (Hippoglossus hippoglossus L.); during development, in tissues of healthy and NNV-injected fish,and in anterior kidney leucocytes. BMC Molecular Biology 11 [paper 36]: [15 pages]. DOI: 10.1186/1471-2199-11-36
  • Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. 2004.Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations.Biotechnology Letters 26 (6): 509–515. DOI: 10.1023/B:BILE.0000019559.84305.47
  • Radonić A., Thulke S., Bae H.-G., Müller M.A., Siegert W.,Nitsche A. 2005. Reference gene selection for quantitative real-time PCR analysis in virus infected cells: SARS corona virus, Yellow fever virus, human herpesvirus-6 Camelpox virus and cytomegalovirus infections. Virology Journal 2 [paper 7]: [5 pages]. DOI: 10.1186/1743-422X-2-7
  • Radonić A., Thulke S., Mackay I.M., Landt O., Siegert W.,Nitsche A. 2004. Guideline to reference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications 313 (4): 856–862. DOI:10.1016/j.bbrc.2003.11.177
  • Rasmussen K.R., Whelly S.M., Barker K.L. 1988. Estradiol regulation of the synthesis of uterine proteins with clusters of proline- and glycine-rich peptide sequences. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research 970 (2): 177–186. DOI: 10.1016/0167-4889(88)90177-2
  • Rasmussen R. 2001. Quantification on the LightCycler. Pp.21–34. In: Meuer S., Wittwer C., Nakagawara K. (eds.)Rapid cycle real-time PCR, methods and applications.Springer Press, Heidelberg, Germany.
  • Sangiao-Alvarellos S., Guzmán J.M., Martín del Río M.P.,Mancera J.M., Soengas J.L. 2004. Actions of 17β-estradiol on carbohydrate metabolism in liver, gills and brain of gilthead sea bream Sparus auratus during acclimation to different salinities. Marine Biology 146 (3): 607–617. DOI:10.1007/s00227-004-1464-x
  • Seidman D.S., Itsekson A., Alesker M., Zolti M., Carp H.,Wolman I. 2009. Estradiol valerate as a possible endocrine reproductive disruptor: evidence from an in vivo rat model.Fertility and Sterility 91 (4): 1510–1512. DOI:10.1016/j.fertnstert.2008.08.018
  • Socha M., Sokołowska-Mikołajczyk M., Szczerbik P., Chyb J., Mikołajczyk T., Epler P. 2012. The effect of polychlorinated biphenyls mixture (Aroclor 1254) on the embryonic development and hatching of Prussian carp, Carassius gibelio, and common carp, Cyprinus carpio (Actinopterygii: Cypriniformes: Cyprinidae). Acta Ichthyologica et Piscatoria 42 (1): 31–35. DOI: 10.3750/AIP2011.42.1.04
  • Stern-Straeter J., Bonaterra G.A., Hörmann K., Kinscherf R.,Goessler U.R. 2009. Identification of valid reference genes during the differentiation of human myoblasts. BMC Molecular Biology 10 [paper 66]: [9 pages]. DOI:10.1186/1471-2199-10-66
  • Sumpter J.P. 1998. Xenoendocrine disrupters—environmental impacts. Toxicology Letters 102–103: 337–342. DOI:10.1016/S0378-4274(98)00328-2
  • Sunny F., Jacob A., Oommen O.V. 2002. Sex steroids regulate intermediary metabolism in Oreochromis mossambicus.Endocrine Research 28 (3): 175–188. DOI: 10.1081/ERC-120015056
  • Thellin O., Zorzi W., Lakaye B., De Borman B., Coumans B.,Hennen G., Grisar T., Igout A., Heinen E. 1999.Housekeeping genes as internal standards: use and limits.Journal of Biotechnology 75 (2–3): 291–295.
  • Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002. Accurate normal-ization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3 (7): 1–12. DOI: 10.1186/gb-2002-3-7-research0034
  • Wang H., Wu T., Qin F., Wang L., Wang Z. 2012. Molecular cloning of Foxl2 gene and the effects of endocrine-disrupting chemicals on its mRNA level in rare minnow, Gobiocypris rarus. Fish Physiology and Biochemistry 38 (3): 653–664.DOI: 10.1007/s10695-011-9548-2
  • Wang J. 1992. [Reproductive biology of Gobiocypris rarus.]Acta Hydrobiologica Sinica 16 (2): 165–174. [In Chinese.]
  • Zha J., Wang Z., Wang N., Ingersoll C. 2007. Histological alternation and vitellogenin induction in adult rare minnow (Gobiocypris rarus) after exposure to ethynylestradiol and nonylphenol. Chemosphere 66 (3): 488–495.
  • Zhang X., Ding L., Sandford A.J. 2005. Selection of reference genes for gene expression studies in human neutrophils by real-time PCR. BMC Molecular Biology 6 [paper 4]: [7 pages]. DOI: 10.1186/1471-2199-6-4
  • Zheng W.-j., Sun L. 2011. Evaluation of housekeeping genes as references for quantitative real time RT-PCR analysis of gene expression in Japanese flounder (Paralichthys olivaceus).Fish and Shellfish Immunology 30 (2): 638–645.DOI: 10.1016/j.fsi.2010.12.014

Uwagi

rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-13180dee-5d9e-4da0-976a-bfe837d4e4b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.