PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2017 | 70 | 4 |

Tytuł artykułu

Changes accompanying proliferative capacity and morphology of Nicotiana tabacum L. callus in response to 2,4-D

Autorzy

Treść / Zawartość

Warianty tytułu

PL
Zmiany związane ze zdolnością do proliferacji i morfologią kalusa Nicotiana tabacum L. w odpowiedzi na różne stężenia 2,4-D

Języki publikacji

EN

Abstrakty

EN
The common trait of all auxins is a stimulation of cell elongation and also cell division in the presence of cytokinin; both are essential for callus induction and its multiplication. The response of plant tissues to various compounds with auxin activity may be quite different. In this study, the effectiveness of a synthetic auxin, 2,4-dichlorofenoxyacetic acid (2,4-D), instead of the generally applied natural auxin, indole-3-acetic acid (IAA), was tested for the proliferation of Nicotiana tabacum callus. The following concentrations of 2,4-D were tested: 0.1, 0.5, 1.0, 1.5, and 2.0 mg dm−3. Callus was derived from stem pith and its proliferation allowed on MS medium through five subcultures at 25°C and in darkness. After each passage, the fresh weight and morphological features of the callus were determined. The 0.5 mg dm−3 2,4-D treatment was the most favorable for producing the greatest increase in fresh weight in each of five subsequent subcultures as well as maintaining normal morphological features for proliferation. However, the 1.0 mg dm−3 2,4-D treatment in comparison with the lowest, 0.1 mg dm−3, was more beneficial when considering regular increases of fresh weight and a better cell cohesion for callus growth.
PL
Do indukcji i namnażania kalusa niezbędne jest zastosowanie odpowiedniej auksyny, podanej samodzielnie lub z cytokininą. Spośród naturalnych auksyn IAA jest często wykorzystywana do stymulowania proliferacji kalusa Nicotiana tabacum. Zastosowanie IAA wymaga wyższych stężeń ze względu na nietrwałość, wynikającą z wrażliwości na światło i wysoką temperaturę. Takich ograniczeń nie posiada syntetyczna auksyna 2,4-D. Celem tej pracy była ocena przydatności 2,4-D do proliferacji kalusa Nicotiana tabacum z następującymi wariantami stężeń 0.1, 0.5, 1.0, 1.5 i 2 mg dm−3. Proliferację kalusa z rdzenia łodygi przeprowadzono na pożywce MS przez 5 pasaży bez dostępu światła i w temperaturze 25°C. Po każdym pasażu określono świeżą masę i cechy morfologiczne kalusa takie jak barwa, struktura powierzchni i stopień spójności komórek. Spośród badanych stężeń 2,4-D, najefektywniej stymulującym było 0.5 mg dm−3 ze względu na najwyższy przyrost świeżej masy w każdym z pięciu kolejnych pasaży oraz sprzyjające proliferacji cechy morfologiczne kalusa. Wariant stężenia 1.0 mg dm−3 2,4-D w porównaniu z 0.1 mg dm−3 okazał się korzystniejszy, ponieważ charakteryzował się regularnymi przyrostami i lepszą dla namnażania spójnością komórek kalusa.

Słowa kluczowe

Wydawca

-

Czasopismo

Rocznik

Tom

70

Numer

4

Opis fizyczny

Article 1725 [11p.], fig.,ref.

Twórcy

Bibliografia

  • 1. Steward FC, Mapes MO, Mears K. Growth and organised development of cultured cells. Am J Bot. 1958;45:705–708. https://doi.org/10.2307/2439728
  • 2. Gatz A, Kowalski T. Tracheary element differentiation and morphogenetic changes in callus derived from embryos of pepper (Capsicum annuum L.). Acta Scientiarum Polonorum. Hortorum Cultus. 2011;10(1):131–146.
  • 3. Ikeuchi M, Sugimoto K, Iwase A. Plant callus: mechanisms of induction and repression. Plant Cell. 2013;25:3159–3173. https://doi.org/10.1105/tpc.113.116053
  • 4. Miller CO, Skoog F. Chemical control of bud formation in tobacco stem segments. Am J Bot. 1953;40:768–773. https://doi.org/10.2307/2438273
  • 5. Phillips GC. In vitro morphogenesis in plants – recent advances. In Vitro Cell Dev Biol Plant. 2004;40:342–345. https://doi.org/10.1079/IVP2004555
  • 6. Debergh PC, Read PE. Micropropagation. In: Debergh PC, Zimmerman RH, editors. Micropropagation technology and application. Dordrecht: Kluwer Academic Publishers; 1991. p. 1–15. https://doi.org/10.1007/978-94-009-2075-0_1
  • 7. Rout GR, Mohapatra A, Mohan Jain S. Tissue culture of pot plant: a critical review on present scenario and future prospects. Biotechnol Adv. 2006;24:531–560. https://doi.org/10.1016/j.biotechadv.2006.05.001
  • 8. Gamborg OL. Plant tissue culture. Biotechnology, milestones. In Vitro Cell Dev Biol Plant. 2002;38:84–92. https://doi.org/10.1079/IVP2001281
  • 9. Filova A. Production of secondary metabolites in plant tissue cultures. Research Journal of Agricultural Science. 2014;46(1):236–245.
  • 10. Leon J. Rojo E, Sanchez-Serrano JJ. Wound signalling in plants. J Exp Bot. 2001;52(354):1–9. https://doi.org/10.1093/jexbot/52.354.1
  • 11. Savatin DV, Gramegna G, Modesti V, Gervone F. Wounding in the plant tissue: the defence of a dangerous passage. Front Plant Sci. 2014;5:470. https://doi.org/10.3389/fpls.2014.00470
  • 12. Gautheret RJ. Sur la posibilité de réaliser la culture indéfinite des tissu de tuberculec de carotte. C R Hebd Seances Acad Sci. 1939;208:118–121.
  • 13. Nobecourt P. Sur la perennite et l’augmentation de volume des cultures de tissus vegetaux. C R Seances Soc Biol Fil. 1939;130:1270–1271.
  • 14. Grembow HJ, Langenbeck-Schwich B. The relationship between oxidase activity, peroxidase activity, hydrogen peroxide and phenolic compounds in the degradation of indole-3-acetic acid in vitro. Planta. 1983;157:131–137. https://doi.org/10.1007/BF00393646
  • 15. Michalczuk L, Ribinicky DM, Cooke TJ, Cohen JD. Regulation of indole-3-acetic acid biosynthesis pathways in carrot cell cultures. Plant Physiol. 1992;100:1346–1353. https://doi.org/10.1104/pp.100.3.1346
  • 16. Hamilton RH, Hurter J, Hall JK, Ercegovich CD. Metabolism of phenoxyacetic acids. Metabolism of 2,4-dichlorophenoxyactic acid and 2,4,5-trichlorophenoxyactic acid by bean plants. J Agric Food Chem. 1971;19(5):480–483. https://doi.org/10.1021/jf60177a052
  • 17. Grossmann K. Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci. 2010;66:113–120. https://doi.org/10.1002/ps.1860
  • 18. Pavlica M, Papes D, Nagy B. 2,4-Dichlorophenoxyacetic acid causes chromatin and chromosome abnormalities in plant cells and mutation in cultured mammalian cells. Mutation Research Letters. 1991;263(2):77–81. https://doi.org/10.1016/0165-7992(91)90063-A
  • 19. Davis DG. 2,4-Dichlorophenoxyacetic acid and indoleacetic acid partially counteract inhibition of organogenesis by difluoromethylornithine. Physiol Plant. 1997;101:425–433. https://doi.org/10.1111/j.1399-3054.1997.tb01017.x
  • 20. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962;15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • 21. Husin MAG, Hasan M, Taha RM. Callus induction from tobacco (Nicotiana tabacum) leaf explants for the production of quinone. Asia-Pacific Journal of Chemical Engineering. 2005;13(5–6):563–572. https://doi.org/10.1002/apj.5500130506
  • 22. Viana AM, Mantell SH. Comparative uptake and metabolism of 2-[14C]-2,4-dichlorophenoxyacetic acid in callus cultures of monocot (Dioscorea spp.) and dicot (Nicotiana tabacum L.) plants. Rev Bras Bot. 1998;21(1):89–99.
  • 23. Yamada Y, Yasuda T, Koge M, Sekiya J. The interrelationship of 2,4-dichlorophenoxyactic acid with molecular components of the cell during callus induction. Agric Biol Chem. 1971;35:99–104. https://doi.org/10.1271/bbb1961.35.99
  • 24. Xu JF, Ying PQ, Han AM, Su ZG. Enhanced salidroside production in liquidcultivated compact callus aggregates of Rhodiola sachalinensis: manipulation of plant growth regulators and sucrose. Plant Cell Tissue Organ Cult. 1998;55:53–58. https://doi.org/10.1023/A:1026489515174
  • 25. Kirkham MB, Holder PL. Water osmotic and turgor potentials of kinetin-treated callus. HortScience. 1981;16:306–307.
  • 26. Barciszewski J, Rattan SIS, Siboska G, Clark BFC. Kinetin – 45 years on. Plant Sci. 1999;148:37–45. https://doi.org/10.1016/S0168-9452(99)00116-8
  • 27. Barciszewski J, Massino F, Clark BFC. Kinetin – a multiactive molecule. Int J Biol Macromol. 2007;40:182–192. https://doi.org/10.1016/j.ijbiomac.2006.06.024
  • 28. Skoog F, Miller CO. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118–130.
  • 29. Fan M, Xu C, Xu K, Hu Y. Lateral organ boundaries transcription factors direct callus formation in Arabidopsis regeneration. Cell Res. 2012;22:1169–1180. https://doi.org/10.1038/cr.2012.63
  • 30. Tromas A, Paponov I, Perrot-Rechenmann C. AUXIN BINDING PROTEIN 1: functional and evolutionary aspects. Trends Plant Sci. 2010;15:436–446. https://doi.org/10.1016/j.tplants.2010.05.001
  • 31. Sauer M, Kleine-Vehn J. AUXIN BINDING PROTEIN 1: the outsider. Plant Cell. 2011;23:2033–2043. https://doi.org/10.1105/tpc.111.087064
  • 32. Perrot-Rechenmann C. Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2010;2(5):a001446. https://doi.org/10.1101/cshperspect.a001446
  • 33. Ljung K, Hull AK, Kowalczyk M, Marchant A, Celenza J, Cohen JD, et al. Biosynthesis, conjugation, catabolism and homeostasis of indole-3-acetic acid in Arabidopsis thaliana. Plant Mol Biol. 2002;49:249–272. https://doi.org/10.1023/A:1015298812300
  • 34. Sen MK, Nasrin S, Rahman S, Jamal AHM. In vitro callus induction and plantlet regeneration of Achyranthes aspera L., a high value medicinal plant. Asian Pac J Trop Biomed. 2014;4(1):40–46. https://doi.org/10.1016/S2221-1691(14)60206-9
  • 35. Gautheret RJ. Histogenesis in plant tissue cultures. J Natl Cancer Inst. 1957;19:555–573.
  • 36. Atta R, Laurens L, Boucheron-Dubuisson E, Guivarch A, Carnero E, Giraudat-Pautot V, et al. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 2009;57:626–644. https://doi.org/10.1111/j.1365-313x.2008.03715.x
  • 37. Lindsey K, Yeoman MM. Dynamic of plant cell culture. In: Vasil IK, editor. Cell culture and somatic cell genetics of plants. Vol. 2. Cell growth, nutrition, cytodifferentiation and cryopreservation. New York, NY: Academic Press Inc.; 1985. p. 61–101.
  • 38. Enders TA, Strader LC. Auxin activity: past, present, and future. Am J Bot. 2015;10(2):180–196. https://doi.org/10.3732/ajb.11400285
  • 39. Cai X, Wang GY, Cao WJ. In vitro induction and proliferation of callus from immature cotyledons and embryos of Juglans regia cv. ‘Xiangling’. Not Bot Horti Agrobot Cluj Napoca. 2013;41(2):378–384.
  • 40. Iiyama K. Lam TBT, Stone BA. Phenolic acid bridges between polysaccharides and lignin. Phytochemistry. 1990;29:733–737. https://doi.org/10.1016/0031-9422(90)80009-6
  • 41. Laukkanen H, Rautiainen L, Taulavuori E, Hohtola A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol. 2000;20:467–475. https://doi.org/10.1093/treephys/20.7.467
  • 42. Chaudhary G, Dantu PR. Evaluation of callus browning and develop a strategically callus culturing of Boerhaavia diffusa L. Journal of Plant Development. 2015;22(1):47–58.
  • 43. Purwianingsih W, Febri S, Kusdianti. Formation flavonoid metabolites in callus culture of Chrysanthemum cinerariefolium as alternative provision medicine. AIP Conf Proc. 2016;1708:030005. https://doi.org/10.1063/1.4941150
  • 44. Rodriquez-Serrano M, Pazmiño DM, Sparkes I, Rochetti A, Hawes C, Romero-Puertas MC, et al. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics. J Exp Bot. 2014;65(17):4783–4793. https://doi.org/10.1093/jxb/era237
  • 45. Yu F, Qian L, Nibau C, Duan Q, Kita D, Levasseur K, et al. FERONIA receptor kinase pathway suppresses abscisic acid signalling in Arabidopsis by activating ABI2 phosphatase. Proc Natl Acad Sci USA. 2012;109:14693–14698. https://doi.org/10.1073/pnas.1212547109

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-1302f272-bda3-4e29-bd94-cea3f3e379bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.