PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 69 | 03 |

Tytuł artykułu

Molecular phylogenetic analysis of the domestic cat and the Eurasian lynx based on Cyp21gene

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The aim of the study was to determine the nucleotide sequence of the CYP21 gene of the Eurasian lynx, eight representatives of five selected domestic cat breeds and a European mixed-breed cat on account of the key role of this gene product in adrenal steroidogenesis. Cats nuclear DNA was obtained from peripheral blood, while the lynx DNA was isolated from muscle tissue. 21HS gene amplification was performed in 10 parts with the unified PCR conditions. The reaction products were sequenced. On the basis of the determined nucleotide (nc) sequence of the gene, the sequence of amino acids (aa) of the protein was determined. The sequences obtained in our study and collected from the GeneBank were aligned using Mafft and subjected to phylogenetic analysis using the program MrBayes 3.2. A total of 11 SNP’s were detected in 9 tested cat breeds and an additional 3 indels in the mixed-breed cat. Between the studied cats and lynx a total of 33 SNP differences were determined. In addition, three indels were located in the lynx that were absent in cats. In domestic cats the 21HS gene occurs as a series of three long alleles: 2500 bp, 2503 bp, and 2504 bp. Both alleles of lynx were 2502 bp in length. Genetic distance was identified between the studied breeds of cats, as well as between cats and the lynx. A genetic analysis of Cyp21 nucleotide sequences of cats and lynx was performed against homologous sequences obtained from GeneBank, derived from 13 different vertebrate species. In addition, evolutionary distance was estimated between the amino acid sequences (aa) of the cat/lynx and homologous sequences obtained from the GeneBank and derived from 15 different vertebrate species. It was demonstrated that the aa sequence of cat is almost identical to the sequence of lynx. Overall, basing on 21HS aa sequence, the closest kinship links felines and canids, then felines with pigs and ruminants, after which were rodents. The lowest CYP21 kinship links aa sequences of felines with eels and birds, followed by humans and apes.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

69

Numer

03

Opis fizyczny

p.174-180,fig.,ref.

Twórcy

autor
  • Laboratory for Molecular Cell Biology, Department of Genetics, Faculty of Biology and Animal Breeding, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland
autor
  • Laboratory for Molecular Cell Biology, Department of Genetics, Faculty of Biology and Animal Breeding, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland
  • Laboratory for Molecular Cell Biology, Department of Genetics, Faculty of Biology and Animal Breeding, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland
autor
  • Laboratory for Molecular Cell Biology, Department of Genetics, Faculty of Biology and Animal Breeding, Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631 Wroclaw, Poland
autor
  • Molecular Techniques Unit, Department of Forensic Medicine, Faculty of Medicine, Wroclaw Medical University, Curie-Sklodowskiej 52, 50-369 Wroclaw, Poland
autor
  • Molecular Techniques Unit, Department of Forensic Medicine, Faculty of Medicine, Wroclaw Medical University, Curie-Sklodowskiej 52, 50-369 Wroclaw, Poland

Bibliografia

  • 1.Barg E., Tokarska M., Wikiera B., Kosowska B.: Congenital Adrenal Hyperplasia - Advances in Diagnosis. Adv. Clin. Exp. Med. 2003, 12, 507-515.
  • 2.Benton M. J.: Early origins of modern birds and mammals: molecules vs. morphology. Bioessays 1999, 21, 1043-1051.
  • 3.Bromham L., Phillips M. J., Penny D.: Growing up with dinosaurs: molecular dates and the mammalian radiation. Trends Ecol. Evol. 1999, 14, 113-118.
  • 4.Cavalli-Sforza L. L.: The DNA revolution in population genetics. Trends Genet. 1998, 14, 60-65.
  • 5.Corneli P. S.: Complete Mitochondrial Genomes and Eutherian Evolution. J. Mammal. Evol. 2002, 9, 281-305.
  • 6.Darriba D., Taboada G. L., Doallo R., Posada D.: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 2011, 27, 1164-1165.
  • 7.Driscoll C. A., Menotti-Raymond M., Roca A. L., Hupe K., Johnson W. E, Geffen E., Harley E. H., Delibes M., Pontier D., Kitchener A. C., Yamaguchi N., O'Brien S. J., Macdonald D. W.: The Near Eastern Origin of Cat Domestication. Science 2007, 317, 519-523.
  • 8.Forest M. G.: Steroid enzyme defects leading to male pseudohermaphroditism. Indian J. Pediatr. 1992, 59, 501-514.
  • 9.Johnson W. E., Eizirik E., Pecon-Slattery J., Murphy W. J., Antunes A., Teeling E., O'Brien S. J.: The late Miocene radiation of modern Felidae: a genetic assessment. Science 2006, 311, 73-77.
  • 10.Katoh K., Toh H.: Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26, 1899-1900.
  • 11.Knighton E. L.: Congenital adrenal hyperplasia secondary to 11 beta-hydroxylase deficiency in a domestic cat. J. Am. Vet. Med. Assoc. 2004, 225, 238-241.
  • 12.Menotti-Raymond M., David V. A., Pflueger S. M., Lindblad-Toh K., Wade C. M., O'Brien S. J., Johnson W. E.: Patterns of molecular genetic variation among cat breeds. Genomics 2008, 91, 1-11.
  • 13.Merke D. P.: Approach to the Adult with Congenital Adrenal Hyperplasia due to 21-Hydroxylase Deficiency. J. Clin. Endocrinol. Metab. 2008, 93, 653-660.
  • 14.Nebert D. W., Russell D. W.: Clinical importance of the cytochromes P450. Lancet 2002, 360, 1155-6112.
  • 15.Notredame C., Higgins D. G., Heringa J.: T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000, 302, 205-217.
  • 16.Nylander J.: MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University 2004.
  • 17.O'Brien S. J., Johnson W., Driscoll C., Pontius J., Pecon-Slattery J., Menotti-Raymond M.: State of cat genomics. Trends. Genet. 2008, 24, 268-279.
  • 18.Owens S. L., Downey M. E., Pressler B. M., Birkenheuer A. J., Chandler D. W., Scott-Moncrieff J. C.: Congenital Adrenal Hyperplasia Associated with Mutation in an 11β-Hydroxylase-Like Gene in a Cat. J. Vet. Intern. Med. 2012, 26, 1221-1226.
  • 19.Pang S., Yang X., Wang M., Tissot R., Nino M., Manaligod J., Bullock L. P., Mason J. I.: Inherited congenital adrenal hyperplasia in the rabbit: absent cholesterol side-chain cleavage cytochrome P450 gene expression. Endocrinology 1992, 31, 181-186.
  • 20.Puts D. A., McDaniel M. A., Jordan C. L., Breedlove S. M.: Spatial Ability and Prenatal Androgens: Meta-analyses of CAH and Digit Ratio (2D:4D) Studies. Arch. Sex. Behav. 2008, 37, 100-111.
  • 21.Riepe F. G., Sippell W. G.: Recent advances in diagnosis, treatment, and outcome of congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Rev. Endocr. Metab. Disord. 2007, 8, 349-363.
  • 22.Ronquist F., Huelsenbeck J. P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572-1574.
  • 23.Rozen S., Skaletsky H. J.: Primer 3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000, 132, 365-386.
  • 24.Speiser P. W., Azziz R., Baskin L. S., Ghizzoni L., Hensle T. W., Merke D. P., Meyer-Bahlburg H. F., Miller W. L., Montori V. M., Oberfield S. E., Ritzen M., White P. C.: Endocrine Society: Congenital Adrenal Hyperplasia Due to Steroid 21-Hydroxylase Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2010, 95, 4133-4160.
  • 25.Strzała T., Frontczak A., Plizga A., Kosowska B.: Analiza filogenetyczna genu 21-hydroksylazy steroidowej u przedstawicieli gromady Mammalia. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu 2004, 501, 311-318.
  • 26.White P. C., Speiser P. W.: Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr. Rev. 2000, 21, 245-291.
  • 27.Wisniewski A. B., Migeon C. J., Malouf M. A., Gearhart J. P.: Psychosexual Outcome In Women Affected By Congenital Adrenal Hyperplasia Due To 21-Hydroxylase Deficiency J. Urol. 2004, 171, 2497-2501.
  • 28.Yoder A. D., Yang Z.: Estimation of primate speciation dates using local molecular clocks. Mol. Biol. Evol. 2000, 17, 1081-1090.
  • 29.Zardoya R., Meyer A.: Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Mol. Biol. Evol. 1996, 13, 933-942.

Uwagi

Rekord w opracowaniu

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-11e7145c-36ea-4547-8b43-46f47fa8a381
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.