PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 66 | 3 |

Tytuł artykułu

Bacterial communities from the arsenic mine in Złoty Stok, Sudety mountains, Poland

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Investigations of bacterial communities and characterization of mineralogy of the environment in the Złoty Stok As-Au deposit werecarried out. PXRD analysis revealed the presence of picropharmacolite as the most common secondary arsenic mineral in the mine. Total DNA was extracted from slime streams or slime biofilms samples to investigate the bacterial communities. PCR amplification of 16S rDNA was performed followed by subcloning of its products. Over 170 clones were analyzed by means of RFLP method. Eight group of clones representing different restriction patterns were identified. The nucleotide sequences of their inserts suggest that bacteria present in the mine environment belong to: Flavobacteria, Sphingobacteriia, Bacteroides, Proteobacteria, Mollicutes and Firmicutes. The metagenomic approach allows to demonstrate a higher diversity of microbiota than classical microbiological studies of cultivable isolates.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

66

Numer

3

Opis fizyczny

p.375-381,fig.,ref.

Twórcy

autor
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Faculty of Geology, University of Warsaw, Warsaw, Poland
autor
  • Faculty of Geology, University of Warsaw, Warsaw, Poland
autor
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
autor
  • Department of General and Environmental Microbiology, Poznan University of Life Sciences, Poznan, Poland

Bibliografia

  • Ausubel F.M., R. Brent, R.R. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith and K. Struhl (ed). 2003. Current Protocols in Molecular Biology. John Wiley and Sons, Inc. New York, NY.
  • Drewniak L., N. Maryan, W. Lewandowski, S. Kaczanowski and A. Sklodowska. 2012. The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environ. Pollution 162: 190–201.
  • Drewniak L., R. Matlakowska, B. Rewerski and A. Sklodowska. 2010. Arsenic release from gold mine rocks mediated by the activity of indigenous bacteria. Hydrometallurgy 104: 437–442.
  • Drewniak L., A. Styczek, M. Majder-Lopatka and A. Sklodowska. 2008. Bacteria, hypertolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ. Pollution 156: 1069–1074.
  • Elias S. and E. Banin. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36: 990–1004.
  • Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.
  • Gonzalez-Toril E., E. Llobet-Brossa, E.O. Casamayor, R. Amann and R. Amils. 2003. Microbial ecology of an extreme acidic environment, the Tinto River. Appl. Environ. Microbiol. 69: 4853–4865.
  • Hammer B.K. and B.L. Bassler. 2003. Quorum sensing controls biofilm formation in Vibrio cholerae: biofilms in V. cholerae. Mol. Microbiol. 50: 101–104.
  • Jiao Y., P. D’haeseleer, B.D. Dill, M. Shah, N.C. VerBerkmoes, R.L. Hettich, J.F. Banfield and M.P. Thelen. 2011. Identification of biofilm matrix-associated proteins from an acid mine drainage microbial community. Appl. Environ. Microbiol. 77: 5230–5237.
  • Leggett H.C., S.P. Brown and S.E. Reece. 2014. War and peace: social interactions in infections. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 1–13.
  • Miller M.B. and B.L. Bassler. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165–199.
  • Narváez-Zapata J.A., N. Rodríguez-Ávila and B.O. Ortega-Morales. 2005. Method for recovery of intact DNA for community analysis of marine intertidal microbial biofilms. Mol. Biotechnol. 30: 51–55.
  • Nei M. and S. Kumar. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York 115–140.
  • Pamp S.J., C. Sternberg and T. Tolker-Nielsen. 2009. Insight into the microbial multicellular lifestyle via flow-cell technology and confocal microscopy. Cytometry Part A. 75: 90–103.
  • Ramette A. 2009. Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl. Environ. Microbiol. 75: 2495–2505.
  • Römling U. and C. Balsalobre. 2012. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272: 541–561.
  • Saitou N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
  • Schloss P.D. and J. Handelsman. 2006. Introducing SONS, a tool for operational taxonomic unit-based comparisons of microbial community memberships and structures. Appl. Environ. Microbiol. 72: 6773–6779.
  • Schloss P.D. and S.L. Westcott. 2011. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77: 3219–3226.
  • Tamura K., G. Stecher, D. Peterson, A. Filipski and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30: 2725–2729.
  • Waters C.M. and B.L. Bassler. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346.
  • Wu J. and C. Xi. 2009. Evaluation of different methods for extracting extracellular DNA from the biofilm matrix. Appl. Environ. Microbiol. 75: 5390–5395.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-11c35a4d-2e34-4687-9476-d28e112de3f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.