Zakład Innowacyjnych Biomateriałów i Nanotechnologii, Instytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, ul.Wojska Polskiego 71 B 60-630 Poznań
Zakład Innowacyjnych Biomateriałów i Nanotechnologii, Instytut Włókien Naturalnych i Roślin Zielarskich w Poznaniu, ul.Wojska Polskiego 71 B 60-630 Poznań
Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu, Poznań
Bibliografia
Balakumar, S., Arasaratnam, V., Balasubramaniam, K. (2001). Isolation and improvement of a thermotolerant Saccharomyces cerevisiae strain. World J. Microbiol. Biotechnol., 17, 739746.
Ballesteros, M., Oliva, J. M., Negro, M. J., Manzanares, P., Ballesteros, I. (2004). Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SSF) with Kluyveromycesmarxianus CECT 10875. Process Biochem., 39, 1843-1848.
Haq, I., Hussain, M., Ali, S., Javed, M. M., Qadeer, M. A. (2010). Improvement of Saccharomyces cerevisiae gcu-36 through induced mutagenesis for l-phenylacetylcarbinol production. Pak. J. Sci., 62, 3-11.
Hemmati, N., Lightfoot, D. A., Fakhoury, A. (2012). A mutated yeast strain with enhanced etha-nol production efficiency and stress tolerance. Atlas J. Biol., 2, 2, 100-115.
Hou, L. (2009). Novel methods of genome shuffling in Saccharomyces cerevisiae. Biotechnol. Lett., 31, 671-677.
Hou, L. (2010). Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol., 160, 1084-1093.
Jeffries, T. W., Jin, Y. S. (2000). Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv. Appl. Microbiol., 47, 221-268.
Jeffries, T. W., Shi, N. Q. (1999). Genetic engineering for improved xylose fermentation of yeasts. Adv. Biochem. Eng. Biotechnol., 65, 117-161.
Limtong, S., Sumpradit, T., Kitpreechavanich, V., Tuntirungkij, M., Seki, T., Yoshida, T. (2000). Effect of acetic acid on growth and ethanol fermentation of xylose fermenting yeast and Sac-charomyces cerevisiae. Kasetsart J. Nat. Sci., 34, 64-73.
Lin, Y., Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol., 69, 627-642.
Liu, J. J., Ding, W. T., Zhang, G. Ch., Wang, J. Y. (2011). Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination. Appl. Microbiol. Biotechnol., 91, 1239-1246.
Lu, Y., Cheng, Y. F., He, X. P., Guo, X. N., Zhang, B. R. (2012). Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors. J. Ind. Microbiol. Biotechnol., 39, 73-80.
Mobini-Dehkordi, M., Nahvi, I., Zarkesh-Esfahani, H., Ghaedi, K., Tavassoli, M., Akada, R. (2008). Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol. J. Biosci. Bioeng., 105, 4, 403-408.
Thammasittirong, S. N.-R., Thirasaktana, T., Thammasittirong, A., Srisodsuk, M. (2013). Improvement of ethanol production by ethanol - tolerant Saccharomyces cerevisiae UVNR56. SpringerPlus, 2, 583.
Zetterberg, G. (1978). Mechanism of the lethal and mutagenic effects of phenoxyacetic acids in Saccharomyces cerevisiae. Mutat. Res., 60, 291-300.