PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2019 | 163 | 01 |

Tytuł artykułu

Struktura zbiorowisk grzybów mykoryzowych po pożarze drzewostanu sosny zwyczajnej na siedlisku boru suchego

Treść / Zawartość

Warianty tytułu

EN
Structure of post-fire ectomycorrhizal communities of Scots pine stand in a dry coniferous forest habitat

Języki publikacji

PL

Abstrakty

EN
Ectomycorrhizal communities associated with Pinus sylvestris growing on dry coniferous forest habitat after the fire were studied. In order to investigate the fire effect on ectomycorrhizal fungi and changes of soil parameters in the upper (0−15 cm) soil layer three study plots were established: 1 – the control, 2 – fire zone left for artificial renewal (with the economic method of renewal) and 3 – fire zone left for natural renewal. The analysis of mycorrhizae revealed presence of eight mycorrhizal fungi on Scots pine roots and the value of Shannon−Wiener species diversity index H’ equaled to 1.76. The most abundant were mycorrhizae formed by Tomentella feruginea (31.7%) and Hebeloma crustuliniforme (23.3%). The fraction of Paxillus involutus and em>Rhizopogon sp. mycorrhizae was 16.7% and 13.0%, respectively. The lowest was the number of Thelephora terrestris mycorrhizae (only 1.7%). At the site 2, number of mycorrhizal fungi diminished to five and Shannon−Wiener species diversity index was also lower (1.37). The predominant were mycorrhizae of Cenococcum eophilum (26.7%) and P. involutus (21.7%), whilst the lowest were mycorrhizae of Suillus luteus (1.7%). Although at the third site the number of ectomycorrhizal fungi was the same as on the site 2, the dominance of Thelephora terrestris (66.7%) caused that Shannon−Wiener’s species diversity index was the lowest (1.05). Mycorrhizae of Paxillus involutus and Wilcoxina mikolae were characterised by similar abundance (13.3% and 11.7%, respectively). The lowest number of mycorrhizae was observed for Tomentella sp. (3.3%). Analysis of soil parameters showed an increase of pH on burnt sites in comparison to the control. The soil of burnt sites were also characterised by lower value of C and C/N ratio than the soil on the control treatment. The result showed that ubiquitous mycorrhizal fungi, such as T. terrestis, are able to persist on roots in changed soil environment with low content of nutritions.

Wydawca

-

Czasopismo

Rocznik

Tom

163

Numer

01

Opis fizyczny

s.71-79,tab.,bibliogr.

Twórcy

  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Hodowli Lasu i Genetyki Drzew Leśnych, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn
autor
  • Zakład Ekologii Lasu, Instytut Badawczy Leśnictwa, Sękocin Stary, ul.Braci Leśnej 3, 05-090 Raszyn

Bibliografia

  • Agerer R. 1987-1998. Colour Atlas of Ectomycorrhizae. Einhorn Verlag, Schwabisch-Gmünd.
  • Agerer R., Rambold G. 2004-2007. DEEMY – an information system for characterization and determination of ectomycorrhizae. Munich, Ludwig Maximilians Univ. http://www.deemy.de
  • Baar J., Horton T. R., Kretzer A. M., Bruns T. D. 1999. Mycorrhizal colonization of Pinus muricata from resistant propagules after a stand-replacing wildfire. New Phytol. 143: 409-418.
  • Baldrian P., Kolařík M., Štursová M., Kopecký J., Valášková V., Větrovský T., Žifčáková L., Šnajdr J., Rídl J., Vlček Č., Voříšková J. 2012. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition. The ISME Journal 6: 248-258. DOI: 10.1038/ismej.2011.95.
  • Barker J. S., Simard S. W., Jones M. D., Durall D. M. 2013. Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172: 1179-1189. DOI: 10.1007/s00442--012-2562-y.
  • Bastias B. A., Huang Z. Q., Blumfield T., Xu Z., Cairney J. W. G. 2006. Influence of repeated prescribed burning on the soil fungal community in an eastern Australian wet sclerophyll forest. Soil Biology and Biochemistry 38: 3492-3501. DOI: 10.1016/j.soilbio.2006.06.007/.
  • Bond W. J., Keeley J. E. 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20: 387-394. DOI: 10.1016/j.tree.2005.04.025.
  • Buée M., Vairelles D., Garbaye J. 2005. Year-round monitoring of diversity and potential metabolic activity of the ectomycorrhizal community in a beech (Fagus silvatica) forest subjected to two thinning regimes. Mycorrhiza 15: 235-245 DOI 10.1007/s00572-004-0313-6.
  • Cairney J. W. G., Bastias B. A. 2007. Influences of fire on forest soil fungal communities. Canadian Journal of Forest Research 37 (2): 207-215. https://doi.org/10.1139/x06-190.
  • Certini G. 2005. Effect of fire on properties of soil – a review. Oecologia 143: 1-10.
  • Claridge A. W., Trappe J. M., Hansen K. 2009. Do fungi have a role as soil stabilizers and remediators after forest fire? For. Ecol. Manage. 257: 1063-1069.
  • Dahlberg A. 2002. Effects of fire on ectomycorrhizal fungi in Fennoscandian boreal forests. Silva Fennica 36 (1): 69-80.
  • Dahlberg A., Schimmel J., Taylor A. F. S., Johannesson H. 2001. Post-fire legacy of ectomycorrhizal fungal communities in the Swedish boreal forest in relation to fire severity and logging intensity. Biological Conservation 100: 151-161. DOI: 10.1016/S0006-3207(00)00230-5.
  • De Bano L. F. 2000. The role of fire and soil heating on water repellency in wild and environments: a review. Journal Hydrology 231-232: 195-206.
  • Dhillion S. S., Anderson R. C., Liberta A. E. 1988. Effect of fire on the mycorrhizal ecology of little bluestem (Schizachyrium scoparium). Canadian Journal of Botany 66: 706-713. DOI: 10.1139/b88-102.
  • Dove N. C., Hart S. C. 2017. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecology 13 (2): 37-65. DOI: 10.4996/fireecology.130237746.
  • Dunn P. H., Barro S. C., Poth M. 1985. Soil moisture affects survival of microorganisms in heated chaparral soil. Soil Biology and Biochemistry 17: 143-148. DOI: 10.1016/0038-0717 (85)90105-1.
  • Eom A., Hartnett D. C., Wilson G. W. T., Figge D. A. H. 1999. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. The American Midland Naturalist 142: 55-70. DOI: 10.1674/0003--0031(1999)142[0055:TEOFMA]2.0.CO;2.
  • Hamman S. T., Burke I. C., Knapp E. E. 2008. Soil nutrients and microbial activity after early and late season prescribed burns in a Sierra Nevada mixed conifer forest. Forest Ecology Management 256: 367-374.
  • Hart S. C., Classen A. T., Wright R. J. 2005. Long-term interval burning alters fine root and mycorrhizal dynamics in a ponderosa pine forest. Journal of Applied Ecology 42: 752-761.
  • Heinselman M. L. 1981. Fire and succession in the conifer forests of North America. W: West D. C., Shugart H. H., Botkin D. B. [red.]. Forest succession, concept and application. Springer-Verlag. 370-405.
  • Herr D., Duchesne L., Tellier R., McAlpine R., Peterson R. 1994. Effect of prescribed burning on the ectomycorrhizal infectivity of a forest soil. International Journal of Wildland Fire 4: 95-102. DOI: 10.1071/WF9940095.
  • Hewitt R. E., Bent E., Hollingsworth T. N., Chapin F. S., Taylor D. L. 2013. Resilience of arctic mycorrhizal fungal communities after wildfire facilitated by resprouting shrubs. Ecoscience 20: 296-310. DOI: 10.2980/20-3--3620.
  • Hilszczańska D. 2004. Mycorrhizal status of Scots pine Pinus sylvestris L. seedlings grown in watered and non-watered nursery condition. Dendrobiology 52: 23-28.
  • Hilszczańska D. 2009. Wpływ azotu na cechy biometryczne oraz zawartość tego pierwiastka w siewkach sosny zwy-czajnej z mikoryzą Thelephora terrestris. Leś. Pr. Bad. 70 (1): 19-25.
  • Hilszczańska D., Ciesielska A., Sierota Z. 2008. Enzymatic activity of Thelephora terrestris and Hebeloma crustuliniforme in cultures and mycorrhizal association with Scots pine seedlings. Polish Journal of Environmental Studies 17 (6): 881-886.
  • Hobbie E. A., Colpaert J. V. 2003. Nitrogen availability and colonization by mycorrhizal fungi correlate with nitrogen isotope patterns in plants. New Phytologist 157: 115-126.
  • Holm C. 1995. Succession and spatial distribution of post-fi re fungi in a southern boreal coniferous forest in Norway. M. Sc. thesis. University of Oslo, Norway.
  • Izzo A., Canright M., Bruns T. D. 2006. The effects of heat treatments on ectomycorrhizal resistant propagules and their ability to colonize bioassay seedlings. Mycological Research 110: 196-202. DOI: 10.1016/j.mycres.2005.08.010.
  • Jackson R. B., Pockman W. T., Hoffmann W. A., Bleby T. M., Armas C. 2007. Structure and function of root systems. W: Pugnaire F. I., Valladares F. [red.]. Functional plant ecology. CRC, Boca Raton. 151-173.
  • Jiménez-Esquilín A., Stromberger M. E., Massman W. J., Frank J. M., Shepperd W. D. 2007. Microbial community structure and activity in a Colorado Rocky Mountain forest soil scarred by slash pile burning. Soil Biology and Biochemistry 39 (5): 1111-1120.
  • Johnson E. A. 1992. Fire and vegetation dynamics: Studies from North American boreal forest. Cambridge University Press.
  • Jonsson L., Dahlberg A., Nilsson M.-C., Zackrisson O., Kĺrén O. 1999. Ectomycorrhizal fungal communities in late-successional Swedish boreal forests, and their composition following wildfire. Molecular Ecology 8: 205-215. DOI: 10.1046/j.1365-294x.1999.00553.x.
  • Kowalkowski A. 1973. Instrukcja laboratoryjna dla pracowni gleboznawczo-nawożeniowych. Warszawa – Sękocin.
  • Lemanowicz J., Bartkowiak A. 2015. Variation in the activity of phosphatases and the content of phosphorus and carbon in the top layer of soil one year after a forest fire Sci. Rev. Eng. Env. Sci. 68 145-154.
  • Lygis V., Vasiliauskas R., Stenlid J. 2005. Clonality in the postfire root rot ascomycete Rhizina undulata. Mycologia 97 (4): 788-792.
  • Mah K., Tackaberry L. E., Egger K. N., Massicotte H. B. 2001. The impacts of broadcast burning after clear-cutting on the diversity of ectomycorrhizal fungi associated with hybrid spruce seedlings in central British Columbia. Canadian Journal of Forest Research 31: 224- 235. DOI: 10.1139/x00-158.
  • Martín-Pinto P., Vaquerizo H., Peńalver F., Olaizola J., Oria-de-Rueda J. A. 2006. Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. Forest Ecology and Management 225: 296-305. DOI: 10.1016/j.foreco.2006.01.006.
  • Miesel J. R., Goebel P. C., Corace R. G., Hix D. M., Kolka R., Palik B., Mladenoff D. 2012. Fire effects on soils in Lake States Forests: A Compilation of published research to facilitate long-term investigations. Forests 3: 1034-1070.
  • Olszowska G. 2009. Enzyme activity of soils after large-scale fires under varying habitat conditions using different methods of forest regeneration. Forest Research Papers 70: 183-188.
  • Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb roślin. Instytut Ochrony Środowiska, Warszawa.
  • Palfner G., Canseco M. I., Casanova-Katny A. 2008. Post-fire seedlings of Nothofagus alpina in Southern Chile show strong dominance of a single ectomycorrhizal fungus and a vertical shift in root architecture. Plant Soil 313: 237-250.
  • Penttilä R., Kotiranta H. 1996. Short-term effects of prescribed burning on wood-rotting fungi. Silva Fenn. 30: 399--419.
  • Pereira P., Úbeda X., Martin D. A. 2012. Fire severity effects on ash chemical composition and water extractable elements. Geoderma 191: 105-114.
  • Petersen P. M. 1971. The macromycetes in a burnt forest area in Denmark. Botanisk Tidskrift 66: 228-248.
  • Rincón A., Santamaría B. P., Ocańa L., Verdú M. 2014. Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza 24: 131-141. DOI: 10.1007/s00572-013-0520-0.
  • Rowe J. S. 1983. Concepts of fire effects on plant individual and species. W: Wein R. W., MacLean D. A. [red.]. The role of fire in northern circumpolar ecosystems. John Wiley and Sons. 135-154.
  • Rowe J. S., Scotter G. W. 1973. Fire in the boreal forest. Quat. Res. 3: 444-464.
  • Rykowski K. 2012. Huragan w lasach. Klęska czy zakłócenie rozwoju? IBL, Sękocin Stary.
  • Schimmel J., Granström A. 1996. Fire severity and vegetation response in the boreal Swedish forest. Ecology 77: 1436-1450.
  • Sierota Z., Hilszczańska D. 2009. Struktura ektomikoryz i parametry biometryczne sosny po wysadzeniu na gruncie porolnym. Sylwan 153 (2): 108-116.
  • Stendell E. R., Horton T. R., Bruns T. D. 1999. Early effects of prescribed fire on the structure of the ectomycorrhizal fungus community in a Sierra Nevada ponderosa pine forest. Mycological Research 103: 1353-1359.
  • Tibbet M., Chambers S. M., Cairney J. W. G. 1998. Methods for determinatig extracellular and surface-bound phosphate activities in ectomycorrhizal fungi. W: Varma A. [red.]. Mycorrhiza manual. Springer, New York. 217--226.
  • Turrión M. B., Mulas R., Lafuente F. 2012. Short-term effect of fire severity in chemical and biochemical soil properties in a sandy soil. W: Rad C., González-Carcedo S., Trasar C., Hernández M. T., García C. [red.]. Soil enzymology in the recycling of organic wastes and environmental restoration. Springer-Verlag, Berlin Heidelberg. 133-146.
  • Van Wagner C. E. 1978. Age-class distribution and forest fire cycle. Can. J. For. Res. 8: 220-227.
  • Van Wagner C. E. 1983. Fire behaviour in northern conifer forests and shrublands. W: Wein R. W., MacLean D. A. [red.]. The role of fire in northern circumpolar ecosystems. John Wiley and Sons. 66-95.
  • Visser S. 1995. Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist 129: 389-401. DOI: 10.1111/j.1469-8137.1995.tb04309.x.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0d5a6927-fd61-4a3d-b3c9-93236e157784
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.