PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 588 |

Tytuł artykułu

Ocena wybranych właściwości skrobi wyizolowanej z nasion komosy ryżowej

Treść / Zawartość

Warianty tytułu

EN
The assessment of selected properties of starch isolated from quinoa seeds

Języki publikacji

PL

Abstrakty

PL
Celem pracy była ocena wybranych właściwości skrobi z komosy ryżowej uprawianej w Polsce w porównaniu do skrobi wyizolowanej z nasion komosy pochodzącej z Peru oraz z pszenicy. W skrobiach oznaczano podstawowy skład chemiczny, zbadano ich pęcznienie (SP) i rozpuszczanie amylozy (AML), synerezę, zdolność emulgowania (EC), właściwości termiczne i strawność skrobi in vitro. Różnice między skrobią z różnych komos były głównie wynikiem różnej zawartości amylozy – skrobia z komosy czerwonej o najmniejszej zawartości amylozy (3,3%) cechowała się najniższą temperaturą przemiany, najmniejszą synerezą oraz najlepszą zdolnością emulgowania. Skrobia z komosy uprawianej w Polsce miała bardzo słabą zdolność emulgowania, ale dużą stabilność żeli podczas przechowywania. Wyznaczone wartości przewidywanego indeksu glikemicznego wskazują, że zastępowanie skrobi pszennej skrobią z komosy w produktach poddawanych obróbce termicznej nie będzie powodowało obniżenia ich indeksu glikemicznego.
EN
The use of quinoa seeds for consumption can be hindered by the significant saponin content. These seeds could be used to obtain starch, but its properties depend on the seed variety, amylose content, and growth conditions. Therefore, the aim of this study was to evaluate selected properties of starch from quinoa cultivated in Poland as compared to starch isolated from seed originating from Peru and wheat starch. The starch was isolated from seeds of white (QW), black (QB) and red (QR) quinoa originating from Peru, and from seeds of the white quinoa grown in Poland (QWPL). Comparative material was commercial wheat starch (PS). Starch samples were subject to determinations of moisture, protein, ash, and amylose contents, as well as microscopic examinations. Swelling power (SP) and amylose leaching (AML) during heating of starch solutions, syneresis, emulsifying capacity (EC), thermal properties of starch using differential scanning calorimetry (DSC), and starch digestibility in vitro were also tested. The quinoa starches were characterized by very small granule size and large differences in amylose content (3.3–15.6% d.m.). These two factors determined the properties of quinoa starch. The small size quinoa starch grains have caused that it was rapidly digested in the native state and its predicted glycemic index (pGI) ranged from 86.6 (QWPL) to 93.1 (QW), while that for wheat starch 65.3. Due to the small size granules, quinoa starch also has emulsifying properties in contrast to wheat starch, but this property was dependent on other factors, among others, amylose content. The largest value of EC characterized QR starch (41.2) with the lowest amylose content (3.3%). The QR starch was characterized by the lowest transition temperature, low syneresis, but the greatest swelling power and leaching amylose indicating weak interactions (within the granule interior) between amylose–amylopectin chains. The QWPL starch was characterized by weakest emulsifying capacity, relatively high gel stability during storage, and lowest digestibility in the native state as compared to the other quinoa starches. The studies of digestibility of gelatinized starch showed that relative to native starches, the pGI value of starch from QB and from QR slightly decreased, but it was greater or at the same level as in wheat starch. Recorded pGI value indicates that replacing the wheat starch with quinoa starch in products subjected to heat treatment will not cause a reduction in their glycemic index.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

588

Opis fizyczny

s.91-102,tab.,fot.,bibliogr.

Twórcy

autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
autor
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie
  • Szkoła Główna Gospodarstwa Wiejskiego w Warszawie

Bibliografia

  • Abugoch James L.E., 2009. Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. Adv. Food Nutr. Res. 58, 1–31.
  • Ahamed N.T., Singhal R.S., Kulkarni R.K., Pal M., 1996. Physicochemical and functional properties of Chenopodium quinoa starch. Carbohydr. Polym. 31, 99–103.
  • AOAC, 1990. Official Methods of Analysis. Wyd. XV. AOAC, Arlington, VA.
  • Berti C., Riso O., Monti L.D., Porrini M., 2004. In vitro starch digestibility and in vivo glucose response of gluten-free foods and their gluten counterparts. Eur. J. Nutr. 43, 198–204.
  • Chung H.J., Liu Q., Hoover R., 2009. Impact of annealing and heat-moisture treatment on rapidly digestible, slowly digestible and resistant starch levels in native and gelatinized corn, pea and lentil starches. Carbohydr. Polym. 75, 436–447.
  • Dhital S., Shrestha A.K., Gidley M.J., 2010. Relationship between granule size and in vitro digestibility of maize and potato starches. Carbohydr. Polym. 82, 480–488.
  • Englyst H.N., Kingman S.M., Cummings J.H., 1992. Classification and measurement of nutritionally important starch fractions. Eur. J. Clin. Nutr. 46, 33–50.
  • FAO, 2011. Quinoa: An ancient crop to contribute to world food security. Regional Office for Latin America and the Caribbean.
  • Gozdecka G., Gęsiński K., 2011. Charakterystyka masy nasiennej komosy ryżowej po zbiorze. Inż. Ap. Chem. 3, 27–28.
  • Gozdecka G., Weiner W., Gesinski K., Muszynska J., 2010. Zastosowanie wybranych metod usuwania saponin z powierzchni nasion. ZPPNR 546, 99–105.
  • Granfeldt Y., Björck I., Drews A., Tovar J., 1992. An in vitro procedure based on chewing to predict metabolic responses to starch in cereal and legume products. Eur. J. Clin. Nutr. 46, 649–660.
  • Grochowski Z., 1998. Biologia, uprawa i wykorzystanie komosy ryżowej w Polsce (Chenopodium quinoa Willd.). Hodowla Roślin i Nasiennictwo 2, 21–26.
  • Koksel H., Masatcioglu T., Kahraman K., Ozturk S., Basman A., 2008. Improving effect of lyophilization on functional properties of resistant starch preparations formed by acid hydrolysis and heat treatment. J. Cereal Sci. 47, 275–282.
  • Kozioł M.J., 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). J. Food Compos. Anal. 5(1), 35–68.
  • Krueger B.R., Walker C.E., Knutson C.A., Inglett G.E., 1987. Differential scanning calorimetry of raw and annealed starch isolated from normal and mutant maize genotypes. Cereal Chem. 64, 187–190.
  • Leach H.W., Mccowen L.D., Schoch T.J., 1959. Structure of the starch granule. I. Swelling and solubility patterns of various starches. Cereal Chem. 36, 534–537.
  • Li G., Wang S., Zhu F., 2016. Physicochemical properties of quinoa starch. Carbohydr. Polym. 137, 328–338.
  • Lindeboom N., Chang P.R., Falk K.C., Tyler R.T., 2005a. Characteristics of starch from eight quinoa lines. Cereal Chem. 82(2), 216–222.
  • Lindeboom N., Chang P.R., Tyler R.T., Chibbar R.N., 2005b. Granule-bound starch synthase I (GBSSI) in quinoa (Chenopodium quinoa Willd.) and its relationship to amylose content. Cereal Chem. 82(3), 246–250.
  • Noda T., Takahata Y., Sato T., Suda I., Morishita T., Ishiguro K., Yamakawa O., 1998. Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr. Polym. 37, 153–158.
  • Piecyk M., Drużyńska, B., Worobiej E. Wołosiak R., Ostrowska-Ligęza E., 2013. Effect of hydrothermal treatment of runner bean (Phaseolus coccineus) seeds and starch isolation on starch digestibility. Food Res. Internat. 50, 428–437.
  • Rayner M., Timgren A., Sjöö M., Dejmek P., 2012. Quinoa starch granules: a candidate for stabilising food-grade Pickering emulsions. J. Sci. Food Agric. 92, 1841–1847.
  • Sodhi N.S., Singh N., 2003. Morphological, thermal and rheological properties of starches separated from rice cultivars grown in India. Food Chem. 80(1), 99–108.
  • Srichuwong S., Sunarti T.C., Mishima T., Isono N., Hisamatsu M., 2005. Starches from different botanical sources II: Contribution of amylopectin fine structure to thermal properties and enzyme digestibility. Carbohydr. Polym. 60, 529–538.
  • Steffolani M.E., León A.E., Pérez G.T., 2013. Study of the physicochemical and functional characterization of quinoa and kañiwa starches. Starch-Stärke 65, 976–983.
  • Tester R.F., Morrison W.R., 1990. Swelling and gelatinization of cereal starches. I. Effects of amylopectin, amylose, and lipids. Cereal Chem. 67(6), 551–557.
  • Tovar J., Melito C., Herrera E., Rascón A., Pérez E., 2002: Resistant starch formation does not parallel syneresis tendency in different starch gels. Food Chem. 76, 455–459.
  • Valcárcel-Yamani B., da Silva Lannes S.C., 2012. Applications of quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus spp.) and their influence in the nutritional value of cereal based foods. Food Pub. Health 2(6), 265–275.
  • Warren F.J., Royall P.G., Gaisford S., Butterworth P.J., Ellis P.R., 2011. Binding interactions of α-amylase with starch granules: The influence of supramolecular structure and surface area. Carbohydr. Polym. 86, 1038–1047.
  • Williams P.C., Kuzina F.D., Hlynka I., 1970. A rapid colorimetric procedure for estimating the amylose content of starches and flours. Cereal Chem. 47, 411–420.
  • Wolter A., Hager A.S., Zannini E., Arendt E.K., 2013. In vitro starch digestibility and predicted glycaemic indexes of buckwheat, oat, quinoa, sorghum, teff and commercial gluten-free bread. J. Cereal Sci. 58, 431–436.
  • Thorne M.J., Thompson L.U., Jenkins D.J., 1983. Factors affecting starch digestibility and the glycemic response with special reference to legumes. Am. J. Clin. Nutr. 38, 481–488.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0d42bff2-e4ce-4dab-ae99-d0c12645709e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.