PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 77 | 4 |

Tytuł artykułu

Antimuscarinic - induced convulsions in fasted mice after food intake: No evidence of spontaneous seizures, behavioral changes or neuronal damage

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Prolonged or repeated seizures have been shown to cause spontaneous recurrent seizures, increased anxiety‑related behavior, locomotor hyperactivity, impaired functions of learning and memory, and neuronal damage in the hippocampus and other brain regions in animals. Mice and rats treated with antimuscarinic drugs after fasting for two days or less develop convulsions after being allowed to eat ad libitum. To address whether such behavioral and neuroanatomic changes occur following these convulsions, mice treated i.p. with saline (control) or 2.4 mg/kg atropine and given food after 24 h of fasting were grouped according to seizure scores for behavioral and histological analysis. Following convulsions, the occurrence of spontaneous recurrent seizures was observed for 30 days. Motor activity and grooming behavior were assessed in the open field, and memory was assessed using the novel object recognition test 4 and 7 days after onset of convulsions, respectively. Animals allocated for the histological analysis were decapitated 7 days after onset of convulsions and hippocampal slices were evaluated for the percentage of degenerating neurons stained with Fluoro‑Jade C. Spontaneous recurrent seizures, locomotor alterations, anxiety‑related behavior, memory impairment, and neuronal loss in the granular layer of the dentate gyrus were not detected in the animals with seizure score 1–2 or 3–5. These results are in accordance with those related to the absence of behavioral changes, cognitive deficits, and hippocampal neuronal damage after single brief seizures in animals and patients with epilepsy.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

77

Numer

4

Opis fizyczny

p.373-381,fig.,ref.

Twórcy

autor
  • Department of Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
autor
  • Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
autor
  • Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
  • Department of Histology and Embryology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
autor
  • Department of Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey

Bibliografia

  • Akula KK, Dhir A, Kulkarni SK (2007) Systemic administration of adenosine ameliorates pentylenetetrazol‑induced chemical kindling and second‑ ary behavioural changes in mice. Fundam Clin Pharmacol 21: 583–594.
  • Aniol VA, Ivanova‑Dyatlova AY, Keren O, Guekht AB, Sarne Y, Gulyaeva NV (2013) A single pentylenetetrazole‑induced clonic‑tonic seizure is accompanied by a slowly developing cognitive decline in rats. Epilepsy Behav 26: 196–202.
  • Arida RM, Scorza FA, Peres CA, Cavalheiro HA (1999) The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res 34: 99–107.
  • Arque G, Fotaki V, Fernandez D, de Lagran MM, Arbones ML, Dierssen M (2008) Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine‑regulated kinase‑1A (Dyrk1A). PLoS One 3: e2575.
  • Bengzon J, Kokaia L, Elmer, E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of dentate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci 94: 10432–10437.
  • Bernard PB, Castano AM, Beitzel CS, Carlson VB, Benke TA (2015) Behavioral changes following a  single episode of early‑life seizures support the latent development of an autistic phenotype. Epilepsy Behav 44: 78–85.
  • Bernhardt BC, Worsley KJ, Kim H, Evans AC, Bernasconi A, Bernasconi N (2009) Longitudinal and cross‑sectional analysis of atrophy in pharmacoresistant temporal lobe epilepsy. Neurology 72: 1747–1754.
  • Bertaina‑Anglade V, Enjuanes E, Morillon D, Drieu la Rochelle C (2006) The object recognition task in rats and mice: A simple and rapid model in safety pharmacology to detect amnesic properties of a new chemical entity. J Pharmacol Toxicol Meth 54: 99–105.
  • Bortel A, Levesque  M, Biagini G, Gorman J, Avoli  M (2010) Convulsive status epilepticus duration as determinant for epileptogenesis and interictal discharge generation in the rat limbic system. Neuro Biol 40: 478–489.
  • Brandt C, Glien M, Potschka H, Volk H, Löscher W (2003) Epileptogenesis and neuropathology after different types of status epilepticus induced by prolonged electrical stimulation of the basolateral amygdala in rats. Epilepsy Res 55: 83–103.
  • Brewster AL, Lugo JN, Patil VV, Lee WL, Qian Y, Vanegas F, Anderson AE (2013) Rapamycin reverses status epilepticus–induced memory deficits and dentritic damage. PLoS One 8: e57808.
  • Büget B, Zengin Türkmen A, Allahverdiyev O, Enginar N (2016) Antimuscarinic‑induced convulsions in fasted animals after food intake: Evaluation of the effects of levetiracetam, topiramate and different doses of atropine. Naunyn Schmiedeberg’s Arch Pharmacol 389: 57–62.
  • Cardoso A, Carvalho LS, Lukoyanova EA, Lukoyanov NV (2009) Effects of repeated electroconvulsive shock seizures and pilocarpine‑induced status epilepticus on emotional behavior in the rat. Epilepsy Behav 14: 293–299.
  • Cardoso A, Lukoyanova EA, Madeira MD, Lukoyanov NV (2011) Seizure‑induced structural and functional changes in the rat hippocampal formation: comparison between brief seizures and status epilepticus. Behav Brain Res 225: 538–546.
  • Cavazos JE, Das I, Stula TP (1994) Neuronal loss induced in limbic pathways by kindling: Evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci 14: 3106–3121.
  • Drexel M, Preidt AP, Sperk G (2012) Sequel of spontaneous seizures after kainic acid‑induced status epilepticus and associated neuropathological changes in the subiculum and entorhinal cortex. Neuropharmacology 65: 806–817.
  • Enginar N, Yamantürk P, Nurten A, Nurten R, Koyuncuoğlu H (2003) Scopolamine‑induced convulsions in fasted mice after food intake: determination of blood glucose levels, [3H]glutamate binding kinetics and antidopaminergic drug effects. Neuropharmacology 44: 199–205.
  • Enginar N, Nurten A, Yamantürk Çelik P, Açıkmeşe B (2005) Scopol‑ amine‑induced convulsions in fasted mice after food intake: Effects of glucose intake, antimuscarinic activity and anticonvulsant drugs. Neuro‑ pharmacology 49: 293–299.
  • Enginar N, Hatipoğlu I, Fırtına  M (2008) Evaluation of the acute effects of amitriptyline and fluoxetine on anxiety using grooming analysis algorithm in rats. Pharmacol Biochem Behav 89: 450–455.
  • Enginar N, Nurten A (2010) Seizures triggered by food intake in anti‑ muscarinic‑treated fasted animals: evaluation of the experimental findings in terms of similarities to eating‑triggered epilepsy. Epilepsia 51(Suppl 3): 80–84.
  • Escorihuela RM, Fernandez‑Teruel A, Gil L, Aguilar R, Tobena A, Driscoll P (1999) Inbred Roman high‑ and low‑avoidance rats: differences in anxiety, novelty seeking, and shuttlebox behaviors. Physiol Behav 67: 19–26.
  • Furtado MA, Lumley LA, Robison C, Tong LC, Lichtenstein S, Yourick DL (2010) Spontaneous recurrent seizures after status epilepticus induced by soman in Sprague‑Dawley rats. Epilepsia 51: 1503–1510.
  • Gröticke I, Hoffmann K, Löscher  W (2007) Behavioral alterations in the pilocarpine model of temporal lobe epilepsy in mice. Exp Neurol 207: 329–349.
  • Gröticke I, Hoffmann K, Löscher W (2008) Behavioral alterations in a mouse model of temporal lobe epilepsy induced by intrahippocampal injection of kainate. Exp Neurol 213: 71–83.
  • Haas KZ, Sperber EF, Opanashuk LA, Stanton PK, Moshe SL (2001) Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Hippocampus 11: 615–625.
  • Holmes GL (2004) Effects of early seizures on later behavior and epileptogenicity. Ment Retard Dev Disabil Res Rev 10: 101–105.
  • Karoly N, Dobo E, Mihaly A (2015) Comparative immunohistochemical study of the effects of pilocarpine on the mossy cells, mossy fibres, and inhibitory neurons in murine dentate gyrus. Acta Neurobiol Exp 75: 220–237.
  • Jiang  W, Duong TM, de Lanerolle NC (1999) The neuropathology of hyperthermic seizures in the rat. Epilepsia 40: 5–19.
  • Jokeit E, Ebner A (2002) Effects of chronic epilepsy on intellectual functions. Prog Brain Res 135: 455–463.
  • Müller CJ, Bankstahl  M, Gröticke I, Löscher  W (2009a) Pilocarpine vs. lithium‑pilocarpine for induction of status epilepticus in mice: development of spontaneous seizures, behavioral alterations and neuronal damage. Eur J Pharmacol 619: 15–24.
  • Müller CJ, Gröticke I, Bankstahl  M, Löscher  W (2009b) Behavioral and cognitive alterations, spontaneous seizures and neuropathology developing after a  pilocarpine‑induced status epilepticus in mice C57BL/6 mice. Exp Neurol 219: 284–297.
  • Navarro Mora G, Bramanti P, Osculati F, Chakir A, Nicolato E, Marzola P et al. (2009) Does pilocarpine‑induced epilepsy in adult rats require status epilepticus? PLoS One 4: e5759.
  • Nurten A, Enginar N (2006) The evaluation of antimuscarinic‑induced convulsions in fasted rats after food intake. Epilepsy Res 72: 171–177.
  • Nurten A, Özerman B, Özen İ, Kara İ (2009) The role of solid fluid intake in antimuscarinic‑induced convulsions in fasted mice. Epilepsy Behav 15: 142–145.
  • Oliveira CV, Grigoletto J, Funck VR, Ribeiro LR, Royes LFF, Fighera MR, Furian AF, Oliveira MS (2015) Evaluation of potential gender‑related differences in behavioral and cognitive alterations following pilocarpine‑induced status epilepticus in C57BL/6 mice. Physiol Behav 143: 142–150.
  • Olney JW, Collins RC, Sloviter RS (1986) Excitotoxic mechanisms of epileptic brain damage. Adv Neurol 44: 857–877.
  • Portugal‑Santana P, Doretto MC, Tatsuo MAKF, Duarte IDG (2004) Involvement of prolactin, vasopressin and opioids in post‑ictal antinociception induced by electroshock in rats. Brain Res 1003: 1–8.
  • Racine RJ (1972) Modification of seizure activity by electrical modification. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32: 281–294.
  • Rocha LL, Lopez‑Meraz ML, Niquet J, Wasterlain CG (2007) Do single seizures cause neuronal death in the human hippocampus? Epilepsy Curr 7: 77–81.
  • Rojas A, Ganesh T, Manji Z, O’Neill T, Dingledine R (2016) Inhibition of the prostaglandin E2 receptor EP2 prevents status epilepticus‑induced deficits in the novel object recognition task in rats. Neuropharmacology 110: 419–430.
  • Schmued LC, Albertson C, Slikker  W (1997) Fluoro‑Jade: a  novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751: 37–46.
  • Schmued LC, Stowers CC, Scallett AC, Xu L (2005) Fluoro‑Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res 1035: 24–31.
  • Schultz MK, Wright LKM, Furtado MA, Stone MF, Moffett MC, Kelley NR et al. (2014) Caramiphen edisylate as adjunct to standart therapy attenuates soman‑induced seizures and cognitive deficits in rats. Neurotoxicol Teratol 44: 89–104.
  • Senanayake N (1994) Reflex epilepsies: experience in Sri Lanka. Ceylon Med J 39: 67–74.
  • Sestakova N, Puzserova A, Kluknavsky M, Bernatova I (2013) Determination of motor activity and anxiety‑related behaviour in rodents: methodolog‑ ical aspects and role of nitric oxide. Interdiscip Toxicol 6: 126–35.
  • Striano S, Coppola A, del Gaudio  L, Striano P (2012) Reflex seizures and reflex epilepsies: old models for understanding mechanisms of epileptogenesis. Epilepsy Res 100: 1–11.
  • Stula TP, Hagen J, Pitkanen A (2003) Do epileptik seizures damage the brain? Curr Opin Neurol 16: 189–195.
  • Szyndler J, Piechal A, Blecharz‑Klin K, Skorzewska A, Maciejak P, Walkowiak J, Turzynska D, Bidzinski A, Plaznik A, Widy‑Tyszkiewicz E (2006) Effect of kindled seizures on rat behavior in water Morris maze test and amino acid concentrations in brain structures. Pharmacol Rep 58: 75–82.
  • Tamada K, Tomonaga S, Hatanaka F, Nakai N, Takao K, Miyakawa T, Nakatani J, Takumi T (2010) Decreased exploratory activity in a mouse model of 15q duplivation syndrome; implications for disturbance of serotonin signaling. PLoS One 15: e15126.
  • Turski WA, Cavalheiro EA, Schwarz  M, Czuczwar SJ, Kleinrok Z, Turski  L (1983) Limbic seizures produced by pilocarpine in rats: behavioural, electroencephalographic and neuropathological study. Behav Brain Res 9: 315–335.
  • Vingerhoets G (2006) Cognitive effects of seizures. Seizure 15: 221–226.
  • Winters BD, Saksida LM, Bussey TJ (2006) Paradoxical facilitation of object recognition memory after infusion of scopolamine into perirhinal cortex: implications for cholinergic system function. J Neurosci 26: 9520‑9529.
  • Yuede CM, Zimmerman SD, Dong H, Kling MJ, Bero AW, Holtzman DM, Timson BF, Csernansky JG (2009) Effects of voluntary and forced exercise on plaque deposition, hippocampal volume, and behavior in the Tg2576 mouse model of Alzheimer’s disease. Neurobiol Dis 35: 426–432.
  • Zhang R, Xue G, Wang S, Zhang  L, Shi C, Xie X (2012) Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/ PS1 Alzheimer’s disease mouse model. J Alzheimers Dis 31: 801–812.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0d3e6c04-e289-48bb-a809-e137e62e9ae1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.