PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 21 | 1 |

Tytuł artykułu

The response of maize seedlings to salt stress under increasing levels of phosphorus

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
This study was conducted to evaluate the combined effect of increasing doses of phosphate and moderate salinity on the growth and some biochemical parameters of maize seedlings. The experiments were carried out on the maize variety KB 1902 grown in hydroponic cultures under controlled conditions. Salt stress was induced by 50 mmol dm-3 NaCl at three levels of KH2PO4 (in mmol dm-3): 1.0 (standard dose in a nutrient solution), 0.25 (decreased dose), 2.0 (increased dose). After 7 days of cultivation, the plants were harvested, growth parameters were examined and assessments were made of the concentrations of photosynthetic pigments, total protein, soluble carbohydrates and free phosphate. Salt stress caused a significant reduction in the fresh and dry weight of plants, ranging from 33-45% in comparison to the plants grown without NaCl, irrespective of external phosphate concentrations. Concentrations of photosynthetic pigments and total proteins were unaffected by salinity, regardless of the external phosphorus levels. The two higher concentrations of Pi (1.0 and 2.0 mmol dm-3) in the saline nutrient medium resulted in a marked accumulation of phosphorus in the leaves of maize, whereas the lowest level of Pi (1/4 of the standard dose in the nutrient solution) had no effect on the phosphorus content. Both the increased (2 P) and decreased (1/4 P) phosphorus concentration in the external medium induced a significant increase in the content of soluble carbohydrates in the leaves of maize grown under salt stress. In brief, the response of the maize variety KB 1902 to NaCl stress at the initial stage of growth was not found to have been modified by the examined doses of phosphorus, and there was no relationship between NaCl and the increasing doses of phosphate.

Wydawca

-

Rocznik

Tom

21

Numer

1

Opis fizyczny

p.185-194,fig.,ref.

Twórcy

autor
  • Chair of Plant Nutrition Wroclaw, University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wroclaw, Poland
autor
  • Chair of Plant Nutrition Wroclaw, University of Environmental and Life Sciences, Wroclaw, Poland
autor
  • Chair of Plant Nutrition Wroclaw, University of Environmental and Life Sciences, Wroclaw, Poland

Bibliografia

  • Ashraf M., Hahris P.J.C. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci., 166(1): 3-16. DOI: 10.1016/j.plantsci.2003.10.024
  • Bernstein L., Francois E., Clark H.A. 1974. Interactive effects of salinity and fertility on yields of grain and vegetables. Agron. J., 66(3): 412-421. DOI: 10.2134/agronj1974.0002196200660 0030023x
  • Bott S., Tesfamarian Т., Kania A., Eman B., Aslan N., Römheld V., Neumann G. 2011. Phytotoxicity of glyphosate soil residues remobilised by phosphate fertilisation. Plant Soil, 342(1-2): 249-263. DOI: 10.1007/s11104-010-0689-3
  • Cerda A., Bingham F.T., Hoffman G. 1977. Interactive effect of salinity and phosphorus on sesame. Soil Sci. Soc. Am. J., 41(5): 915-918. DOI: 10.2136/sssaj1977.03615995004100050021x
  • Cheeseman J.M. 1988. Mechanisms of salinity tolerance in plants. Plant Physiol., 87(3): 547-550. DOI: 10.1104/pp.87.3.547
  • Fageria v.D. 2001. Nutrient interaction in crop plants. J. Plant Nutr., 24(8): 1269-1290. DOI: 10.1081/PLN-100106981
  • Gibson, T.S. 1988. Carbohydrate metabolism and phosphorus/salinity interaction in wheat (Triticum aestivum L.). Plant Soil, 111(1): 25-35. DOI: 10.1007/BF02182033
  • Grattan S.R., Grieve C.M. 1999. Salinity - mineral nutrient in horticultural crops. Sci. Hort., 78(1-4): 127-157. DOI: 10.1016/S0304-4238(98)00192-7
  • Greenway H., MuNNS R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol., 31: 149-190. DOI: 10.1146/annurev.pp.31.060180.001053
  • Guo R., Shi. L., Yang Y. 2009. Germination, growth, osmotic adjustment and ionic balance of eheat in response to saline and alkaline stresses. Soil Sci. Plant Nutr., 55(5): 667-679. DOI: 10.1111/j.1747-0765.2009.00406.x
  • Hu Y., Schmidhalter u. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. J. Plant Nutr. Soil Sci., 168(4): 541-549. DOI: 10.1002/jpln.200420516
  • Hu Y., Burucs z., Schmidhalter u. 2006. Short-term effect of drought and salinity on growth and mineral elements in wheat seedlings. J. Plant Nutr., 29(12): 2227-2243. DOI: 10.1080/01904160600975111
  • Kaya C., Higgs D., Ince F., Murillo Amador В., Cakir A., Sakar E. 2003. Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J. Plant Nutr., 26(4), 807-820. DOI: 10.1081/PLN-120018566
  • Khelil A., Menu Т., Ricard В. 2007. Adaptative response to salt involving carbohydrate metabolism in leaves of a salt-sensitive tomato cultivar. Plant Physiol. Biochem., 45(8): 551-559. DOI: 10.1016/j.plaphy.2007.05.003
  • Lichtenthaler H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomem-branes. Methods Enzymol., 148: 350-38. DOI:10.1016/0076-6879(87)48036-1
  • Lowry o.H., Rosenbrough N.J., Fahr A.L., Randall R.J. 1951. Protein measurement with Folinphenol reagent. J. Biol. Chem., 193(1): 265-275.
  • Madüeno-Molina A., Garcia-Paredes J.D., Martinez-Hernandez J, Bugarín Montoya R., Bojórqüez-Serrano J.I. 2008. Induced salinity and supplementary phosphorus on growth and mineral content of frijolillo. Comm. Soil Sci. Plant Anal., 39(9-10): 1447-1459. DOI: 10.1080/00103620802004243
  • Martinez V., Läüchli A. 1994. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.). New Phytol., 126(4): 609-614. DOI: 10.1111/j.1469-8137.1994. tb02955.x
  • Moüsavi A., Lessani H., Babalar M., Talaei A.R., Fallahi E. 2008. Influence of salinity on chlorophyll, leaf water potential, total soluble sugars, and mineral nutrients in two young olive cultivars. J. Plant Nutr., 31(11): 1906-1916. DOI: 10.1080/01904160802402807
  • MuNNS R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ., 25(2): 239-250. DOI: 10.1046/j.0016-8025.2001.00808.x
  • Navarro J.M., Botella M.A., Cerdä A., Martinez V. 2001. Phosphorus uptake and translocation in salt-stressed melon plants. J. Plant Physiol., 158(6):375-381. DOI: 10.1078/0176-161700147
  • Nelson N. 1944. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153(2): 375-380. http://www.jbc.org/content/153/2/375.citation
  • Neumann P.M. 1997. Salinity resistance and plant growth revisited. Plant Cell Environ., 20(9): 1193-1198. DOI: 10.1046/j.1365-3040.1997.d01-139.x
  • Nieman R.H., Clark H.A. 1976. Interactive effects of salinity and phosphorus nutrition on the concentrations of phosphate and phosphate esters in mature photosynthesizing corn leaves. Plant Physiol., 57(2), 157-161. DOI: http://dx.doi.org/10.1104/pp.57.2.157
  • Phang T.-H., Shao G., Liao X., Yan X., Lam H.-M. 2009. High external phosphate (Pi) increases sodium ion uptake and reduces salt tolerance of 'Pi-tolerant' soybean. Physiol. Plantarum, 135(4): 412-425. DOI: 10.1111/j.1399-3054.2008.01200.x
  • Rogers M.E., Grieve C.M., Shannon M.C. 2003. Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P. Plant Soil, 253(1): 187-194. DOI: 10.1023/A:1024543215015
  • Sacała E., Demczuk A., Grzyś E., Sobczak A. 2002. The effects of salt stress on growth and biochemical parameters in two maize varieties. Acta Soc. Bot. Pol., 71(2): 101-107. DOI: http:// dx.doi.org/10.5586/asbp.2002.010
  • Sacała E., Demczuk A., Grzyś E., Spiak Z. 2008. Effect of salt and water stresses on growth, nitrogen and phosphorus metabolism in Cucumis sativus L. seedlings. Acta Soc. Bot. Pol., 77(1): 23-28. DOI: http://dx.doi.org/10.5586/asbp.2008.003
  • Treeby M.T., van Steveninck R.F.M. 1988. Effects of salinity and phosphate on ion distribution in lupin leaflets. Physiol. Plantarum, 73(3): 317-322. DOI: 10.1111/j.1399-3054.1988. tb00604.x
  • Tüna A.L., Kaya C., Dikilitas M., Higgs D. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Exp. Bot., 62(1): 1-9. DOI: 10.1016/j.envexpbot.2007.06.007
  • Uygur V., Yetisir H. 2009. Effects of rootstocks on some growth parameters, phosphorus and nitrogen uptake by watermelon under salt stress. J. Plant Nutr., 32(4): 629-643. DOI: 10.1080/01904160802715448
  • Waraich E.A, Ahmad R., Saifüllah, Ashraf M.Y., Ehsanüllah 2011. Role of mineral nutrient in alleviation of drought stress in plants. Aust. J. Crop Sci., 5(6): 764-777. http://search.infor-mit.com.au/documentSummary;dn=282340708899391;res=IELHSS>
  • Zheng Y., Jia A.,. Ning Т., Xu J., Li Z., Jiang G. 2008. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance. J. Plant Physiol., 165(14): 1455-1465. DOI: 10.1016/j.jplph.2008.01.001

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0d1483e0-be20-42a0-a549-7cb85f881e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.