PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | 62 | 4 |

Tytuł artykułu

The use of selected statistical methods and Kohonen networks in the revision and redescription of parasites

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Revisions and redescriptions of species and higher taxa have been known in parasitology since the first description of a parasite. Usually, they are based on standard morphometric methods or more modern genetic analysis. The former are not always sufficiently reliable, while the latter often require expensive equipment, pre-defined genetic markers, and appropriately prepared research material. They may be replaced by multivariate statistical methods, in particular discriminant analysis and cluster analysis, and Kohonen artificial neural networks included in data mining. This paper presents the examples of specific applications of these methods for the verification of the affinity of nematodes. The discriminant analysis showed that it was possible to statistically significantly discriminate individual nematode species, both for males and females, based on morphometric variables. This confirmed the previously assumed division of the species complex Amidostomum acutum into three distinct species. Similarly, hierarchical cluster analysis, used for the determination of coherent groups of nematode parasites, allowed the identification of relatively homogeneous clusters of nematode species depending on their circle of hosts, and groups of hosts.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

62

Numer

4

Opis fizyczny

p.285-293,fig.,ref.

Twórcy

autor
  • Laboratory of Biostatistics, West Pomeranian University of Technology, Doktora Judyma 10, 71-466 Szczecin, Poland
  • Laboratory of Biology and Ecology of Parasites, West Pomeranian University of Technology, Doktora Judyma 20, 71-466 Szczecin, Poland
autor
  • Laboratory of Biostatistics, West Pomeranian University of Technology, Doktora Judyma 10, 71-466 Szczecin, Poland
autor
  • Laboratory of Biology and Ecology of Parasites, West Pomeranian University of Technology, Doktora Judyma 20, 71-466 Szczecin, Poland
autor
  • Laboratory of Biology and Ecology of Parasites, West Pomeranian University of Technology, Doktora Judyma 20, 71-466 Szczecin, Poland

Bibliografia

  • [1] Bielecki A. 1997. Fish leeches of Poland in relation to the Palearctic piscicolines (Hirudinea: Piscicolidae: Piscicolinae). Genus 8: 223-375.
  • [2] Cichocka J.M., Bielecki A. 2015. Phylogenetic utility of the geometric model of the body form in leeches (Clitellata: Hirudinida). Biologia 70/8: 1078-1092. doi:10.1515/biolog-2015-0121
  • [3] Kavetska K.M., Królaczyk K., Stapf A., Grzesiak W., Kalisińska E., Pilarczyk B. 2011. Revision of the species complex Amidostomum acutum (Lundahl, 1848) (Nematoda: Amidostomatidae). Parasitology Research 109: 105-117.
  • [4] Tadeusiewicz R., Gąciarz T., Borowik B., Leper B. 2007. Discovering neural network properties using C# programs. PAU, Cracow.
  • [5] Higgs P.G., Attwood T.K. 2005. Bioinformatics and molecular evolution. Wiley-Blackwell, Oxford.
  • [6] Kohonen T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43: 59-69.
  • [7] Larose D.T. 2005. Discovering knowledge in data: an introduction to data mining. John Wiley & Sons, Hoboken, N.J.
  • [8] Haykin S.S. 2009. Neural networks and learning machines. 3rd ed. Prentice Hall, New York.
  • [9] Samarasinghe S. 2007. Neural networks for applied sciences and engineering: from fundamentals to complex pattern recognition. Auerbach, Boca Raton, FL.
  • [10] Yang B.S., Han T., An J.L. 2004. ART–KOHONEN neural network for fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing 18: 645-657.
  • [11] Emamian V., Kaveh M., Tewfik A.H. 2000. Robust clustering of acoustic emission signals using the Kohonen network. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing 2000 (ICASSP’00). 5-9 June 2000, Istanbul, Turkey. Vol. 6: 3891-3894.
  • [12] Wolkenstein M., Hutter H., Mittermayr C., Schiesser W., Grasserbauer M. 1997. Classification of SIMS images using a Kohonen network. Analytical Chemistry 69: 777-782.
  • [13] Hoffmann M., Várady L. 1998. Free-form surfaces for scattered data by neural networks. Journal for Geometry and Graphics 2: 1-6.
  • [14] Chon T.-S., Park Y. S., Moon K. H., Cha E. Y. 1996. Patternizing communities by using an artificial neural network. Ecological Modelling 90: 69-78.
  • [15] Chen Z., Feng T.J., Houkes Z. 1999. Texture segmentation based on wavelet and Kohonen network for remotely sensed images. In: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 1999 (IEEE SMC ‘99). 12- 15 October 1999, Tokyo, Japan. Vol. 6: 816-821.
  • [16] Hernandez-Pajares M., Floris J. 1994. Classification of the Hipparcos input catalogue using the Kohonen network. Monthly Notices of the Royal Astronomical Society 268: 444-450.
  • [17] Cottrell M., Rousset P. 1997. The Kohonen algorithm: a powerful tool for analysing and representing multidimensional quantitative and qualitative data. In: Biological and Artificial Computation: From Neuroscience to Technology: International Work-Conference on Artificial and Natural Neural Networks, IWANN’97. 27 June 1997, Lanzarote, Canary Islands, Spain. (Eds. J. Mira, R. Moreno-Diaz, J. Cabestany). Vol. 1240: 861-871.
  • [18] Cai D., He X., Han J. 2007. Semi-supervised discriminant analysis. In: Proceedings of the IEEE 11th International Conference on Computer Vision, 2007 (ICCV 2007). 14-20 October 2007, Rio de Janeiro, Brazil: 1-7.
  • [19] Chan H., Wei D., Helvie M., Sahiner B., Adler D., Goodsitt M., Petrick M. 1995. Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Physics in Medicine and Biology 40: 857-876.
  • [20] Chiang L.H., Russell E.L., Braatz R.D. 2000. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemometrics and Intelligent Laboratory Systems 50: 243-252.
  • [21] Ye J., Janardan R., Li Q. 2005. Two-dimensional linear discriminant analysis. In: Advances in Neural Information Processing Systems 17 (NIPS 2004), December 2004. (Eds. L.K. Saul, Y. Weiss, L. Bottou). Vancouver, BC, Canada 17:1569-1576.
  • [22] Chiang L.H., Kotanchek M.E., Kordon A.K. 2004. Fault diagnosis based on Fisher discriminant analysis and support vector machines. Computers and Chemical Engineering 28: 1389-1401.
  • [23] Zhao W., Chellappa R., Phillips P.J. 1999. Subspace linear discriminant analysis for face recognition. University of Maryland, College Park, MD.
  • [24] Jung-Senssfelder K. 2007. Equity Financing and Covenants in Venture Capital: An Augmented Contracting Approach to Optimal German Contract Design. Springer Science & Business Media, Berlin.
  • [25] Klecka W.R. 1980. Discriminant analysis. SAGE, Beverly Hills, CA.
  • [26] Garcia H.C. 2008. A framework for the Self Reconfiguration of Automated Visual Inspection Systems. ProQuest, Ann Arbor, MI.
  • [27] Katsanos M. 2010. Intermarket Trading Strategies. John Wiley & Sons, Chichester.
  • [28] Hill T., Lewicki P. 2007. Statistics: methods and applications. StatSoft, Tulsa, OK.
  • [29] Jain A.K. 2010. Data clustering: 50 years beyond Kmeans. Pattern Recognition Letters 31: 651-666.
  • [30] Marrelec G., Messé A., Bellec P. 2015. A Bayesian alternative to mutual information for the hierarchical clustering of dependent random variables. PLOS One 10: e0137278.
  • [31] D’haeseleer P. 2005. How does gene expression clustering work? Nature Biotechnology 23: 1499-1501.
  • [32] Kavetska K.M. 2006. Biological and ecological background of nematode fauna structure formation in the alimentary tracts of wild Anatinae ducks in northwestern Poland. Dissertation, Agricultural University, Szczecin.
  • [33] Villwock R., Steiner M.T.A., Siqueira P.H. 2011. Pattern clustering using ants colony, Ward method and Kohonen maps. In: ECTA and FCTA 2011 - Proceedings of the International Conference on Evolutionary Computation Theory and Applications and the Proceedings of the International Conference on Fuzzy Computation Theory and Applications [parts of the International Joint Conference on Computational Intelligence IJCCI 2011]. 24-26 October 2011, Paris, France. (Eds. A.C. Rosa, J. Kacprzyk, J. Filipe, A.D. Correia). SciTePress, Setubal, Portugal: 137-145.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0c420822-ad20-4975-99a1-9ed2ab6a8b7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.