PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 01 |

Tytuł artykułu

Impact of InMIR319 and light on the expression of InTCP4 gene involved in the development of Ipomoea nil plants

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
MicroRNAs regulate gene expression by guiding the cleavage or attenuating the translation of target mRNAs. In Arabidopsis thaliana, the subset of class II TCP genes (plant-specific group of transcription factors) contains an miR319-binding site. One of them, AtTCP4, regulates negatively leaf growth and positively leaf senescence. In addition, miR319 targeting of TCP4 is critical for petal and stamen development and affects flowering time. The aim of this work was to identify the cDNA of InTCP4 gene and In-miR319 precursor in Ipomoea nil (Pharbitis nil). The cDNA sequence of InTCP4 shows a significant similarity to the cDNA members of the TCP family of other plant species and contains nucleotides complementary to miR319. The identified sequence In-premiR319 creates a long hairpin structure and mature miRNA sequence is located in a similar place as in precursors found in other plant species. Accumulation of InTCP4 mRNA and In-pre-miR319 was examined in various organs of I. nil plants. We found that the InTCP4 is strongly expressed in cotyledons of I. nil seedlings while the In-premiR319 accumulates mainly in the hypocotyls of seedlings. Moreover, we investigate the role of InTCP4 in the flowering induction, flower development and cotyledon senescence in I. nil. We indicate that the InTCP4 expression is controlled by both light/clock and miR319. Both InTCP4 and InMIR319 probably participate in the regulation of such processes as do their homologues in other plant species, the development of cotyledons, leaves and flower elements. The main function of InMIR319 seems to be the regulation of InTCP4 organ localization.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

36

Numer

01

Opis fizyczny

p.29-43,fig.,ref.

Twórcy

autor
  • Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
  • Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
  • Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
  • Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland
  • Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 4 Wilenska Street, 87-100 Torun, Poland
autor
  • Chair of Plant Physiology and Biotechnology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland

Bibliografia

  • Acosta IF, Farmer EE (2010) Jasmonates. In: Arabidopsis Book 8:e0129. doi:10.1199/tab.0129
  • Aggarwal P, Das Gupta M, Joseph AP, Chatterjee N, Srinivasan N, Nath U (2010) Identification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis. Plant Cell 22:1174–1189. doi:10.1105/tpc.109.066647
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410
  • Arazi T, Talmor-Neiman M, Stav R, Riese M, Huijser P, Baulcombe DC (2005) Cloning and characterization of micro-RNAs from moss. Plant J 43:837–848. doi:10.1111/j.1365-313X.2005.02499.x
  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes. Plant Cell 15:2730–2741. doi:10.1105/tpc.016238
  • Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673. doi:10.1105/tpc.105.032185
  • Axtell MJ, Snyder JA, Bartel DP (2007) Common functions for diverse small RNAs of land plants. Plant Cell 19:1750–1769. doi:10.1105/tpc.107.051706
  • Baker CC, Sieber P, Wellmer F, Meyerowitz EM (2005) The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis. Curr Biol 15:303–315. doi:10.1016/j.cub.2005.02.017
  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92:8675–8679
  • Bonnet E, Van de Peer Y, Rouzé P (2006) The small RNA world of plants. New Phytol 171:451–468. doi:10.1111/j.1469-8137.2006.01806.x
  • Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D (2003) The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol J 1:3–22
  • Crawford BC, Nath U, Carpenter R, Coen ES (2004) CINCINNATA controls both cell differentiation and growth in petal lobes and leaves of Antirrhinum. Plant Physiol 135:244–253. doi:10.1104/pp.103.036368
  • Cubas P, Lauter N, Doebley J, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18:215–222. doi:10.1046/j.1365-313X.1999.00444.x
  • Frankowski K, Kesy J, Wojciechowski W, Kopcewicz J (2009) Light- and IAA-regulated ACC synthase gene (PnACS) from Pharbitis nil and its possible role in IAA-mediated flower inhibition. J Plant Physiol 166:192–202. doi:10.1016/j.jplph.2008.02.013
  • Gan S (2004) The hormonal regulation of senescence. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction and action!. Kluwer Academic Publishers, Dordrecht, pp 561–581
  • Giraud E, Ng S, Carrie C, Duncan O, Low J, Lee CP, Aken OV, Millar AH, Murcha M, Whelan J (2010) TCP transcription factors link the regulation of genes encoding mitochondrial proteins with the circadian clock in Arabidopsis thaliana. Plant Cell 22:3921–3934. doi:10.1105/tpc.110.074518
  • Glazińska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J (2009) The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil. J Plant Physiol 166:1801–1813. doi:10.1016/j.jplph.2009.05.011
  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36:D154–D158. doi:10.1093/nar/gkm952
  • Hayama R, Coupland G (2004) The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and Rice. Plant Physiol 135:677–684. doi:10.1105/tpc.107.052480
  • Hayama R, Agashe B, Luley E, King R, Coupland G (2007) A circadian rhythm set by dusk determines the expression of FT homologs and the short-day photoperiodic flowering response in Pharbitis. Plant Cell 19:2988–3000. doi:10.1105/tpc.107.052480
  • Imaizumi T, Kay SA (2006) Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci 11:550–558. doi:0.1016/j.tplants.2006.09.004
  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020. doi:10.1101/gad.999202
  • Jensen AB, Raventos D, Mundy J (2002) Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis. Plant J 29:595–606. doi:10.1046/j.0960-7412.2001.01241.x
  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:49–53. doi:10.1146/annurev.arplant.57.032905.105218
  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217. doi:10.1016/j.devcel.2011.02.003
  • Kęsy J, Maciejewska B, Sowa M, Szumiak M, Kawałowski K, Borzuchowska M, Kopcewicz J (2008) Ethylene and IAA interactions in the inhibition of photoperiodic flower induction of Pharbitis nil. Plant Growth Regul 55:43–50. doi:10.1007/s10725-008-9256-9
  • Kęsy J, Frankowski K, Wilmowicz E, Glazińska P, Wojciechowski W, Kopcewicz J (2010) The possible role of PnACS2 in IAA-mediated flower inhibition in Pharbitis nil. Plant Growth Regul 61:1–10. doi:10.1007/s10725-010-9443-3
  • Kęsy J, Wilmowicz E, Maciejewska B, Frankowski K, Glazińska P, Kopcewicz J (2012) Independent effects of jasmonates and ethylene on inhibition of Pharbitis nil flowering. Acta Physiol Plantarum 33:1211–1216. doi:10.1007/s11738-010-0649-9
  • Kidner CA (2010) The many roles of small RNAs in leaf development. J Genet Genomics 37:13–21. doi:10.1016/S1673-8527(09) 60021-7
  • Kosugi S, Ohashi Y (2002) DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J 30:337–348. doi:10.1046/j.1365-313X.2002.01294.x
  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322. doi:10.1242/dev.01320
  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative chase change in maize. Proc Natl Acad Sci USA 102:9412–9417. doi:10.1073/pnas.0503927102
  • Li Y, Li W, Jin YX (2005) Computational identification of novel family members of microRNA genes in Arabidopsis thaliana and Oryza sativa. Acta Biochim Biophys Sin (Shanghai) 37:75–87. doi:10.1093/abbs/37.2.75
  • Lim PO, Kim HJ, Nam HG (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136. doi:10.1146/annurev.arplant.57.032905.105316
  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146. doi:10.1111/j.1365-313X.2007.03218.x
  • Maciejewska BD, Kęsy J, Zielinska M, Kopcewicz J (2004) Jasmonates inhibit flowering in short-day plant Pharbitis nil. Plant Growth Regul 43:1–8. doi:10.1023/B:GROW.0000038241.00771.bd
  • Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046. doi:10.1016/j.cub.2004.06.022
  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA- directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375. doi:10.1105/tpc.105.031716
  • Martin-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15:31–39. doi:10.1016/j.tplants.2009.11.003
  • Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci USA 106:22534–22539. doi:10.1073/pnas.0908718106
  • Navaud O, Dabos P, Carnus E, Tremousaygue D, Hervé C (2007) TCP transcription factors predate the emergence of land plants. J Mol Evolution 65:23–33. doi:10.1007/s00239-006-0174-z
  • Ogawa Y, King RW (1990) The inhibition of flowering by non-induced cotyledons of Pharbitis nil. Plant Cell Physiol 31:129–135
  • Oh SA, Lee SY, Chung IK, Lee CH, Nam HG (1996) A senescence-associated gene of Arabidopsis thaliana is distinctively regulated during natural and artificially induced leaf senescence. Plant Mol Biol 30:739–754
  • Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791. doi:10.1038/ng2036
  • Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263. doi:10.1038/nature01958
  • Parthier B (1990) Jasmonates: hormonal regulators of stress factors in leaf senescence. J Plant Growth Regul 9:445–454. doi:10.1007/BF02041942
  • Pulido A, Laufs P (2010) Co-ordination of developmental processes by small RNAs during leaf development. J Exp Bot 61:1277–1291. doi:10.1093/jxb/erp397
  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626. doi:10.1101/gad.1004402
  • Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264. doi:10.1016/j.tplants.2011.03.001
  • Sarvepalli K, Nath U (2011) Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. Plant J 67:595–607. doi:10.1111/j.1365-313X.2011.04616.x
  • Schommer C, Palatnik JF, Aggarwal P, Chetelat A, Cubas P, Farmer EE, Nath U, Weigel D (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:1991–2001. doi:10.1371/journal.pbio.0060230
  • Schommer C, Bresso EG, Spinelli SV, Palatnik JF (2012) Role of microRNA miR319 in plant development. In: Sunkar R (ed) MicroRNAs in plant development and stress responses. Signaling and communication in plants, vol 15. Springer, Heidelberg, pp 29–47
  • Sieber P, Wellmer F, Gheyselinck J, Riechmann JL, Meyerowitz EM (2007) Redundancy and specialization among plant microRNAs: role of the MIR164 family in developmental robustness. Development 134:1051–1060. doi:10.1242/dev.02817
  • Thomas B, Vince-Prue D (1997) Photoperiodism in plants, 2nd edn. Academic Press Inc, San Diego, p 428
  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell (Suppl.): S153–S164. doi:10.1105/tpc.000679
  • Ueda J, Kato J (1980) Identification of a senescence-promoting substance from wormwood (Artemisia absinthum L). Plant Physiol 66:246–249
  • van der Graaff E, Schwacke R, Schneider A, Desimone M, Flugge UI, Kunze R (2006) Transcription analysis of arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol 141:776–792. doi:10.1104/pp.106.079293
  • Vince-Prue D, Gressel J (1985) Pharbitis nil. In: Halevy AH (ed) Handbook of flowering IV. CRC Press Inc, Boca Raton, pp 47–81
  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687. doi:10.1016/j.cell.2009.01.046
  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216.doi:10.1105/tpc.105.033076
  • Warthmann N, Das S, Lanz C, Weigel D (2008) Comparative analysis of the MIR319a microRNA locus in Arabidopsis and related Brassicaceae. Mol Biol Evol 25:892–902. doi:10.1093/molbev/msn029
  • Weaver LM, Gan S, Quirino B, Amasino RM (1998) A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant Mol Biol 37:455–469. doi:10.1023/A:1005934428906
  • Woo HR, Chung KM, Park JH, Oh SA, Ahn T, Hong SH, Jang SK, Nam HG (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790. doi:10.1105/TPC.010061
  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759. doi:10.1016/j.cell.2009.06.031
  • Yoshida S (2003) Molecular regulation of leaf senescence. Curr Opin Plant Biol 6:79–84. doi:10.1016/S1369-5266(02)00009-2
  • Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259. doi:10.1111/j.1365-313X.2006.02697.x
  • Zhang B, Wang Q, Pan X (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289. doi:10.1002/jcp.20869

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0c0a9a16-1fa6-44f0-b25c-659565590b84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.