PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2015 | 61 | 2 |

Tytuł artykułu

Oil yield and fatty acid profile of seeds of three Salvia species. A comparative study

Treść / Zawartość

Warianty tytułu

PL
Wydajność otrzymywania oleju i profil kwasów tłuszczowych nasion trzech gatunków Salvia. Badania porównawcze

Języki publikacji

EN

Abstrakty

EN
A comparative study of the oil yield and fatty acid composition of three Salvia species seeds collected in different locations has been conducted. Seed oil extraction was made using a Soxhlet-extractor and fatty acid analysis was undertaken using a GC-FID. The effect of the collecting site on oil yield, as well as the content of individual fatty acid and total fatty acid and fatty acid content was significant. Seed oil yield varied from 14.94 to 22.83% and the total fatty acids ranged from 67.36 to 82.49 mg/g DW. α-Linolenic (24.02-49.19%), linoleic (20.13-42.88%), oleic (12.97-17.81%) and palmitic (8.37-16.63%) acids were the most abundant fatty acids in all analyzed samples. α-Linolenic acid was found to be the major fatty acid in S. verbenaca and S. officinalis species, however, S. aegyptiaca was characterized by the prevalence of linoleic acid. Among the unsaturated fatty acids, which were represented in all samples in high amounts (78.16-89.34%), the polyunsaturated fatty acids (α-linolenic and linoleic acids) showed important levels ranging from 63.09 to 74.71%. Seeds of S. verbenaca were the richest in polyunsaturated fatty acids.
PL
W niniejszej pracy przeprowadzono badanie porównawcze oleju i składu kwasów tłuszczowych otrzymywanych z nasion trzech gatunków szałwii pochodzących z różnych stanowisk. Ekstrakcję oleju z nasion przeprowadzono przy użyciu aparatu Soxhleta. Analizę kwasów tłuszczowych przeprowadzono za pomocą GC-FID. Wpływ miejsca zbioru na wydajnosć otrzymywania oleju, całkowitą zawartość kwasów tłuszczowych i zawartość poszczególnych kwasów tłuszczowych był istotny. Zawartość oleju w nasionach wahała się od 14,94 do 22,83%, a suma kwasów tłuszczowych od 67,36 do 82,49 mg/g suchej masy. W analizowanych próbach dominował kwas α-linolenowy (24,02–49,19%), linolowy (20,13–42,88%), oleinowy (12,97–17,81%) i palmitynowy (8,37–16,63%). Głównym kwasem tłuszczowym w S. verbenaca i S. officinalis okazał się kwas α-linolenowy, natomiast w S. aegyptiaca zanotowano przewagę kwasu linolowego. Spośród nienasyconych kwasów tłuszczowych, które były w dużej ilości reprezentowane we wszystkich próbach (78,16– 89,34%), wielonienasycone kwasy tłuszczowe (kwas α-linolenowy i kwas linolowy) stanowiły od 63,09 do 74,71%. Ich największą zawartość stwierdzono w nasionach S. verbenaca.

Wydawca

-

Czasopismo

Rocznik

Tom

61

Numer

2

Opis fizyczny

p.14-29,fig.,ref.

Twórcy

  • Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia
  • Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia
  • Preparatory Institute for Engineering Studies of Bizerte, Road Menzel Abderrahman, 7021 Zarzouna, Tunisia
autor
  • Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, 7021 Zarzouna, Tunisia

Bibliografia

  • 1. Pottier-Alapetite G. Flore de la Tunisie. Angiospermes, Dicotylédones Dialypétales. Imprimerie officielle de la république Tunisienne, Publications Scientifiques Tunisiennes 1979.
  • 2. Tepe B, Eminagaoglu O, Akpulat HA, Aydin E. Antioxidant potentials and rosmarinic acid levels of the methanolic extracts of Salvia verticillata (L.) subsp. verticillata and Salvia verticillata (L.) subsp. amasiaca (Freyn & Bornm.). Food Chem 2007; 100:985-989.
  • 3. Gören AC, Kiliç T, Dirmenci T, Bilsel G. Chemotaxonomic evaluation of turkish species of Salvia: fatty acid compositions of seed oils. Biochem Syst Ecol 2006; 34:160-164.
  • 4. Perry NSL, Bollen C, Perry EK, Ballard C. Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behav 2003; 75:651-659.
  • 5. Ho CT, Wang M, Wei GJ, Huang TC, Huang MT, Chemistry and antioxidative factors in rosemary and sage. Biofactors 2000; 13:161-166.
  • 6. Ben Taarit M, Msaada K, Hosni K, Marzouk B. Chemical composition of fatty acids and essential oils of Salvia verbenaca L. seeds from Tunisia. Agrochimica 2007; 51:1-33.
  • 7. Azcan N, Ertan A, Demicri B, Baser KHC. Fatty acid composition of seed oils of twelve Salvia species growing in Turkey. Chem Nat Compd 2004; 40 (3):218-221.
  • 8. Bağci E, Vural M, Dirmenci T, Bruehl L, Aitzetmüller K. Fatty acid and tocochromanol patterns of some Salvia L. species. Z Naturforsch C 2004; 59:305-309.
  • 9. Kiliç T, Dirmenci T, Gören AC. Chemotaxonomic evaluation of species of turkish Salvia: fatty acid composition of seed oils II. Rec Nat Prod 2007; 1:17-23.
  • 10. Dweck AC. Introduction: the folklore and cosmetic use of various Salvia species. In: Kintzios SE (ed.). The genus Salvia. Harwood Academic Publishers, The Netherlands, 2000: 1-25.
  • 11. Msaada K, Hosni K, Ben Taarit M, Hammami M, Marzouk B. Effects of growing region and maturity stages on oil yield and fatty acid composition of coriander (Coriandrum sativum L.) fruit. Sci Hort 2009; 120:525-531.
  • 12. Ghebretinsae AG, Graham SA, Camilo GR, Barber JC. Natural infraspecific variation in fatty acid composition of Cuphea (Lythraceae) seed oils. Ind Crops Prod 2008; 27:279-287.
  • 13. Peiretti PG, Gai F. Fatty acid and nutritive quality of chia (Salvia hispanica L.) seeds and plant during growth. An Feed Sci Technol 2009; 148:267-275.
  • 14. Omidi H, Tahmasebi Z, Badi HAN, Torabi H, Miransari M. Fatty acid composition of canola (Brassica napus L.), as affected by agronomical, genotypic and environmental parameters. C R Biologies 2010; 333:248-254.
  • 15. Levin DA. The oil content of seeds: an ecological perspective. Am Nat 1974; 108:193-206.
  • 16. Linder CR. Evolution and adaptive significance of the balance between saturated and unsaturated seed oils in angiosperms. Am Nat 2000; 156:442-458.
  • 17. O’Neill C, Gill MS, Hobbs D, Morgan C, Bancroft I. Natural variation for seed oil composition in Arabidopsis thaliana. Phytochemistry 2003; 64:1077-1090.
  • 18. Melgarejo P, Artes F. Total lipid content and fatty acid composition of oil seed from lesser known sweet pomegranate clones. J Sci Food Agr 2000; 80:1452-1454.
  • 19. Jacocot B. El aceite de oliva: alimento medicinal de aceites y grasas. Oleaginosos 1995; 19:149-152.
  • 20. Carvalho IS, Teixeira MC, Brodelius M. Fatty acids profile of selected Artemisia spp. plants: Health promotion. LWT-Food Sci Technol 2011; 44:293-298.
  • 21. Simopoulos AP. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 2002; 56:365-379.
  • 22. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959; 37:911-917.
  • 23. Douce R. Identification et dosage de quelques glycérophospholipides dans les souches normales et tumorales de scorsomères cultivées «in vitro». C R Acad Sci Paris 1964; 259:3066-3068.
  • 24. Cecchi G, Biasini S, Castano J. Méthanolyse rapide des huiles en solvant. Note de laboratoire. Rev Fr Corp Gras 1985; 4:163-164.
  • 25. Pritchard FM, Eagles HA, Norton RM, Salisbury SA, Nicolas M. Environmental effects on seed composition of Victorian canola. Aust J Exp Agr 2000; 40:679-685.
  • 26. Ayerza R. Oil content and fatty acid composition of chia (Salvia hispanica L.) from five northwestern locations in Argentina. JAOCS 1995; 72:1079-1081.
  • 27. Malik MS, Rafique M, Sattar A, Khan SA. The fatty acids of indigenous resources for posible industrial applications Part XII. The fatty acids composition of the fixed oils of Ocimum sanctum and Salvia aegyptiaca seeds. Pak J Sci Ind Res 1987; 30:369-371.
  • 28. Habibvash FN, Rajamand MA, Heidari R, Sarghein SH, Ricani MH. Chemical analysis of some Salvia species native to West Azarbaijan (Iran). Pakistan J Biol Sci 2007; 10(20):3516-3524.
  • 29. Marechal V, Rigal L. Characterization of by-products of sunflower culture-commercial applications for stalks and heads. Ind Crops Prod 1999; 10:185-200.
  • 30. Johnston AM, Tanaka DL, Miller PR, Brandt SA, Nielsen DC, Lafond GP, Riveland NR. Oilseed crops for semiarid cropping systems in the Northern Great Plains. Agron J 2002; 94:231-240.
  • 31. Carvalho IS, Miranda I, Pereira H. Evaluation of oil composition of some crops suitable for human nutrition. Ind Crops Prod 2006; 24:75-78.
  • 32. Ohlrogge J, Browse J. Lipid biosynthesis. Plant Cell 1995; 7:957-970.
  • 33. Finley JW, Shahidi F. The chemistry, processing and health benefits of highly unsaturated fatty acids: an overview. In: John WJ, Shahidi F (ed.). Omega-3 Fatty Acids, Chemistry, Nutrition and Health Effects. American Chemical Society, Washington, 2000:258-279.
  • 34. Riemersma RA. The demise of the n-6 to n-3 fatty acid ratio? A dossier. Eur J Lipid Sci Tech 2001; 3:372-373.
  • 35. Canvin DT. The effect of temperature in the oil content and fatty acid composition of the oils from several oil seed crops. Can J Bot 1965; 43:63-69.
  • 36. Harris P, McWilliams JR, Mason WK. Influence of temperature on oil content and composition of sunflower seed. Aust J Agric Res 1978; 19:1203-1212.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0b75facf-b8ae-4632-90b8-8fa34c27e242
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.