EN
Two 14-day-old seedlings of maize (Zea mays L.) cultivars (3223 and Vero) were exposed to different concentrations of lead [0, 2, 5 and 8 mM Pb(NO₃)₂‧4H₂O] for 8 days. Exposure of maize cultivars to excess Pb resulted in a significant root growth inhibition though shoot growth and absolute water content remained less affected. The results of chlorophyll a fluorescence indicated that the highly toxic Pb level affected photochemical efficiency in 3223, while no significant effect was observed in the Vero. At the highly toxic Pb concentration, higher membrane leakage was observed in 3223 leaves than that of Vero. This result was related to the accumulation of Pb. On the other hand, the results suggested that there were similar responses in total soluble POD and GR activities with increasing Pb concentrations between both cultivars. But APX activity significantly decreased at highly toxic Pb level in the Vero while a significant increase observed in the 3223. However, SOD activity in 3223 significantly decreased at the highly toxic Pb concentration compared with that at 2 mM Pb concentration. The results of the present study indicated that, Vero withstands excess Pb with its higher Pb accumulation capacity in roots and better upregulated protective mechanisms compared to 3223. Therefore, Vero is more tolerant to Pb toxicity compared to 3223 which was found to be a less tolerant cultivar.