PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 19 | 2 |

Tytuł artykułu

Poly(L-lactide-co-glycolide) thin films can act as autologous cell carriers for skin tissue engineering

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Degradable aliphatic polyesters such as polylactides, polyglycolides and their copolymers are used in several biomedical and pharmaceutical applications. We analyzed the influence of poly(L-lactide-co-glycolide) (PLGA) thin films on the adhesion, proliferation, motility and differentiation of primary human skin keratinocytes and fibroblasts in the context of their potential use as cell carriers for skin tissue engineering. We did not observe visible differences in the morphology, focal contact appearance, or actin cytoskeleton organization of skin cells cultured on PLGA films compared to those cultured under control conditions. Moreover, we did not detect biologically significant differences in proliferative activity, migration parameters, level of differentiation, or expression of vinculin when the cells were cultured on PLGA films and tissue culture polystyrene. Our results indicate that PLGA films do not affect the basic functions of primary human skin keratinocytes and fibroblasts and thus show acceptable biocompatibility in vitro, paving the way for their use as biomaterials for skin tissue engineering.

Wydawca

-

Rocznik

Tom

19

Numer

2

Opis fizyczny

p.297-314,fig.,ref.

Twórcy

autor
  • Laboratory of Cell and Tissue Engineering, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
autor
  • Laboratory of Cell and Tissue Engineering, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
autor
  • Laboratory of Cell and Tissue Engineering, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
autor
  • Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland
autor
  • Laboratory of Cell and Tissue Engineering, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
autor
  • Department of Biomaterials, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow 30-059, Poland
autor
  • Laboratory of Cell and Tissue Engineering, Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology and Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland

Bibliografia

  • 1. Bannasch, H., Fohn, M., Unterberg, T., Bach, A.D., Weyand, B. and Stark, G.B. Skin tissue engineering. Clin. Plast. Surg. 30 (2003) 573–579. DOI: 10.1016/S0094-1298(03)00075-0.
  • 2. Bello, Y.M., Falabella, A.F. and Eaglstein, W.H. Tissue-engineered skin. Current status in wound healing. Am. J. Clin. Dermatol. 2 (2001) 305–313. DOI: 10.2165/00128071-200102050-00005.
  • 3. Kirsner, R.S., Falanga, V. and Eaglstein, W.H. The development of bioengineered skin. Trends Biotechnol. 16 (1998) 246–249. DOI: 10.1016/S0167-7799(98)01196-2.
  • 4. Boyce, S.T., Goretsku, M.J., Greenhalgh, D.G., Kagan, R.J., Rieman, M.T. and Warden, G.D. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann. Surg. 222 (1995) 743–752. DOI: 10.1097/00000658-199512000-00008.
  • 5. Boyce, S.T., Kagan, R.J., Yakuboff, K.P., Meyer, N.A., Rieman, M.T., Greenhalgh, D.G. and Warden, G.D. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann. Surg. 235 (2002) 269–279. DOI: 10.1097/00000658-200202000-00016.
  • 6. Voigt, M., Schauer, M., Schaefer, D.J., Andree, C., Horch, R. and Stark, G.B. Cultured epidermal keratinocytes on a microspherical transport system are feasible to reconstitute the epidermis in full-thickness wounds. Tissue Eng. 5 (1999) 563–572. DOI: 10.1089/ten.1999.5.563.
  • 7. Woodley, D.T., Peterson, H.D., Herzog, S.R., Stricklin, G.P., Burgeson, R.E., Briggaman, R.A., Cronce, D.J. and O’Keefe, E.J. Burn wounds resurfaced by cultured epidermal autografts show abnormal reconstitution of anchoring fibrils. JAMA 259 (1988) 2566–2571. DOI: 10.1001/jama.1988.03720170042031.
  • 8. Herndon, D.N. and Rutan, R.L. Comparison of cultured epidermal autograft and massive excision with serial autografting plus homograft overlay. J. Burn Care Rehabil. 13 (1992) 154–157. DOI: 10.1097/00004630- 199201000-00034.
  • 9. Drukala, J., Bandura, L., Cieslik, K. and Korohoda, W. Locomotion of human skin keratinocytes on polystyrene, fibrin, and collagen substrata and its modification by cell-to-cell contacts. Cell Transplant. 10 (2001) 765–771. DOI: 10.3727/000000001783986251.
  • 10. Yannas, I.V., Burke, J.F. and Gordon, P.L. Design of an artificial skin II. Control of chemical composition. J. Biomed. Mater. Res. 14 (1980) 107–131. DOI: 10.1002/jbm.820140203.
  • 11. Heimbach, D., Luterman, A. and Burke, J.F. Artificial dermis for major burns; a multi-center randomized clinical trial. Ann. Surg. 208 (1988) 313–320. DOI: 10.1097/00000658-198809000-00008.
  • 12. Eaglstein, W.H., Iriondo, M. and Laszlo, K. A composite skin substitute (Graftskin) for surgical wounds: a clinical experience. Dermatol. Surg. 21 (1995) 839–843. DOI: 10.1111/j.1524-4725.1995.tb00709.x.
  • 13. Noordenbos, J., Dore, C. and Hansbrough, J.F. Safety and efficacy of TransCyte for the treatment of partial-thickness burns. J. Burn Care Rehabil. 20 (1999) 275–281. DOI: 10.1097/00004630-199907000-00002.
  • 14. Stephens, R., Wilson, K. and Silverstein, P. A premature infant with skin injury successfully treated with bilayered cell matrix. Ostomy/Wound Manage 48 (2002) 34–38.
  • 15. Gopferich, A. Mechanisms of polymer degradation and erosion. Biomaterials 17 (1996) 103–114. DOI: 10.1016/0142-9612(96)85755-3.
  • 16. Ignatius, A.A. and Claes, L.E. In vitro biocompatibility of bioresorbable polymers: poly(L, DL-lactide) and poly(L-lactide-co-glycolide). Biomaterials 17 (1996) 831–839. DOI: 10.1016/0142-9612(96)81421-9.
  • 17. Mendes, S.C., Reis, R.L., Bovell, Y.P., Cunha, A.M., van Blitterswijk, C.A. and de Bruijn, J.D. Biocompatibility testing of novel starch-based materials with potential application in orthopaedic surgery: a preliminary study. Biomaterials 22 (2001) 2057–2064. DOI: 10.1016/S0142-9612(00)00395-1.
  • 18. Porte, T., Faschingbauer, M., Seide, K. and Jurgens, C. Topkin – eine resorbierbare folie aus lactid-caprolacton. Trauma Berufskrankh. 5 (2003) 443–448. DOI: 10.1007/s10039-003-0811-3.
  • 19. Jurgens, C., Schulz, A.P., Porte, T., Faschingbauer, M. and Seide, K. Biodegradable films in trauma and orthopedic surgery. Eur. J. Trauma 32 (2006) 160–171. DOI: 10.1007/s00068-006-6051-z.
  • 20. Uhlig, C., Rapp, M., Hartmann, B., Hierlemann, H., Planck, H. and Dittel, K.K. Suprathel – an innovative, resorbable skin substitute for the treatment of burn victims. Burns 33 (2007) 221–229. DOI: 10.1016/j.burns.2006.04.024.
  • 21. Selig, H.F., Keck, M., Lumenta, D.B., Mittlbock, M. and Kamolz, L.P. The use of a polylactide-based copolymer as a temporary skin substitute in deep dermal burns: 1-year follow-up results of a prospective clinical noninferiority trial. Wound Repair Regen. 21 (2013) 402–409. DOI: 10.1111/wrr.12050.
  • 22. Keck, M., Selig, H.F., Lumenta, D.B., Kamolz, L.P., Mittlbock, M. and Frey, M. The use of Suprathel in deep dermal burns: first results of a prospective study. Burns 38 (2012) 388–395. DOI: 10.1016/j.burns.2011.09.026.
  • 23. Lysaght, M.J. and Hazlehurst, A.L. Tissue engineering: The end of the beginning. Tissue Eng. 10 (2004) 309–320. DOI: 10.1089/107632704322791943.
  • 24. Pamula, E., Bacakova, L., Filova, E., Buczynska, J., Dobrzynski, P., Noskova, L. and Grausova, L. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci. Mater. Med. 19 (2008) 425–435. DOI: 10.1007/s10856-007-3001-1.
  • 25. Pamula, E., Filova, E., Bacakova, L., Lisa, V. and Adamczyk, D. Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J. Biomed. Mater. Res. A 89 (2009) 432–443. DOI: 10.1002/jbm.a.31977.
  • 26. Scislowska-Czarnecka, A., Pamula, E. and Kolaczkowska, E. Impact of poly(L-lactide) versus poly(L-lactide-co-trimethylene carbonate) on biological characteristics of fibroblasts and osteoblasts. Folia Biol. 61 (2013) 11–24. DOI: 10.3409/fb61_1-2.11.
  • 27. Scislowska-Czarnecka, A., Pamula, E. and Kolaczkowska, E. Biocompatibility evaluation of glycolide-containing polyesters in contact with osteoblasts and fibroblasts. J. Apply. Polymer Sci. 127 (2013) 3256–3268. DOI: 10.1002/app.37762.
  • 28. Dobrzynski, P., Kasperczyk, J., Janeczek, H. and Bero, M. Synthesis of biodegradable copolymers with the use of low toxic Zirconium compounds. 1. Copolymerization of glycolide with L-lactide initiated by Zr(Acac)4. Macromolecules 34 (2001) 5090–5098. DOI: 10.1021/ma0018143.
  • 29. Pamula, E., Dobrzynski, P., Szot, B., Kretek, M., Krawciow, J., Plytycz, B. and Chadzinska, M. Cytocompatibility of aliphatic polyesters – in vitro study on fibroblasts and macrophages. J. Biomed. Mater. Res. A 87 (2008) 524–535. DOI: 10.1002/jbm.a.31802.
  • 30. Tanzi, M.C., Verderio, M.G., Lampugnani, M.G., Resnati, M., Dejana, E. and Sturani E. Cytotoxicity of some catalysts commonly used in the synthesis of copolymers for biomedical use. J. Mater. Sci. 5 (1994) 393–396. DOI: 10.1007/BF00058971.
  • 31. Douglas, T., Pamula, E., Hauk, D., Wiltfang, J., Sivananthan, S., Sherry, E. and Warnke, P.H. Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations. J. Mater. Sci. Mater. Med. 20 (2009) 1909–1915. DOI: 10.1007/s10856-009-3756-7.
  • 32. Pamula, E. and Menaszek, E. In vitro and in vivo degradation of poly(Llactide-co-glycolide) films and scaffolds. J. Mater. Sci. Mater. Med. 19 (2008) 2063–2070. DOI: 10.1007/s10856-007-3292-2.
  • 33. Miekus, K. and Madeja Z. Genistein inhibits the contact-stimulated migration of prostate cancer cells. Cell. Mol. Biol. Lett. 12 (2007) 348–361. DOI: 10.2478/s11658-007-0007-0.
  • 34. Zeiger, A.S., Hinton, B. and Van Vliet, K.J. Why the dish makes a difference: Quantitative comparison of polystyrene culture surfaces. Acta Biomater. 9 (2013) 7354–7361. DOI: 10.1016/j.actbio.2013.02.035.
  • 35. Adamczak, M., Scislowska-Czarnecka, A., Genet, M.J., Dupont-Gillain C.C. and Pamula E. Surface characterization, collagen adsorption and cell behaviour on poly(L-lactide-co-glycolide). Acta Bioeng. Biomech. 13 (2011) 63–75.
  • 36. Kumbar, S.G., Nukavarapu, S.P., James, R., Nair, L.S. and Laurencin, C.T. Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29 (2008) 4100–4107. DOI: 10.1016/j.biomaterials.2008.06.028.
  • 37. Scislowska-Czarnecka, A., Pamula, E., Tlalka, A. and Kolaczkowska, E. Effects of aliphatic polyesters on activation of the immune system: Studies on macrophages. J. Biomater. Sci. Polymer Ed. 23 (2012) 715–738. DOI: 10.1163/092050611X559421.
  • 38. Garric, X., Moles, J.P., Garreau, H., Braud, C., Guilhou, J.J. and Vert, M. Growth of various cell types in the presence of lactic and glycolic acids: the adverse effect of glycolic acid released from PLAGA copolymer on keratinocyte proliferation. J. Biomater. Sci. Polymer Ed. 13 (2002) 1189–1201. DOI: 10.1163/156856202320892957.
  • 39. Biela, S.A., Su, Y., Spatz, J.P. and Kemkemer R. Different sensitivity of human endothelial cells, smooth muscle cells and fibroblasts to topography in thenano-micro range. Acta Biomater. 5 (2009) 2460–2466. DOI: 10.1016/j.actbio.2009.04.003.
  • 40. Hoffman-Kim D., Mitchel J.A. and Bellamkonda R.V. Topography, cell response, and nerve regeneration. Annu. Rev. Biomed. Eng. 12 (2010) 203–231. DOI: 10.1146/annurev-bioeng-070909-105351.
  • 41. Fuchs, E. and Green, H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19 (1980) 1033–1042. DOI: 10.1016/0092-8674(80)90094-X.
  • 42. Moll, R., Franke, W.W., Schiller, D.L., Geiger, B. and Krepler, R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31 (1982) 11–24. DOI: 10.1016/0092- 8674(82)90400-7.
  • 43. Watt, F. Involucrin and other markers of keratinocyte terminal differentiation. J. Invest. Dermatol. 81 (1983) 100–103. DOI: 10.1111/1523-1747.ep12540786.
  • 44. Blackwood, K.A., McKean, R., Canton, I., Freeman, C.O., Franklin, K.L., Cole, D., Brook, I., Farthing, P., Rimmer, S., Haycock, J.W., Ryan, A.J. and MacNeil, S. Development of biodegradable electrospun scaffolds for dermal replacement. Biomaterials 29 (2008) 3091–3104. DOI: 10.1016/j.biomaterials.2008.03.037.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-07d26d23-1a7c-4ec1-8732-c8402c5cd7a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.