PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

2016 | 76 |

Tytuł artykułu

Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
Ectomycorrhizal (ECM) fungi and their symbiotic associations with forest trees are among major drivers of key ecosystem functions such as carbon and nitrogen cycling, plant nutrient and water uptake from soil, plant-plant facilitation/competition and diversity regulation via common mycorrhizal networks. Through their functional traits and interactions with both abiotic and biotic environment, they also significantly affect the process of open land colonization by trees as well as vegetation succession coupled with soil and ecosystem development. Here we review the role of ECM fungi in the early primary and secondary succession following major anthropogenic disturbances. Based on the examples of mine spoils and post-agricultural lands, we demonstrate key ecosystem services provided by ECM fungi in the processes of forest restoration. We point out ecological mechanisms and adaptations which underpin ECM fungal community successional interactions, particularly life histories, dispersal, spatial structure, host preferences, and sensitivity to environmental filters. We emphasize the need of better understanding the role of ECM fungi in the forest restoration practice as it seems crucial for afforestation success and biodiversity rehabilitation. Thus, ectomycorrhizal traits should be a prime consideration in afforestation and carbon sequestration polices, sustainable forest management and biodiversity conservation practices.

Wydawca

-

Czasopismo

Rocznik

Tom

76

Opis fizyczny

p.91-104,ref.

Twórcy

autor
  • Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, PL-90-237 Lodz, Poland
  • Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kornik, Poland
  • Department of Game Management and Forest Protection, Faculty of Forestry, Poznan University of Life Sciences, Wojska Polskiego 71c, 60-625 Poznan, Poland

Bibliografia

  • Adriaensen K, Vrålstad T, Noben JP, Vangronsveld J & Colpaert JV (2005) Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology 71: 7279−7284. doi: 10.1128/aem.71.11.7279-7284.2005.
  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge, UK.
  • Bauman JM, Keiffer CH, Hiremath S & McCarthy BC (2013) Soil preparation methods promoting ectomycorrhizal colonization and American chestnut Castanea dentata establishment in coal mine restoration. Journal of Applied Ecology 50: 721−729. doi: 10.1111/1365-2664.12070.
  • Boerner REJ, DeMars BG & Leicht PN (1996) Spatial patterns of mycorrhizal infectiveness of soils long a successional chronosequence. Mycorrhiza 6: 79−90. doi: 10.1007/s005720050111.
  • Bois G, Piché Y, Fung MYP & Khasa DP (2005) Mycorrhizal inoculum potentials of pure reclamation materials and revegetated tailing sands from the Canadian oil sand industry. Mycorrhiza 15: 149−158. doi: 10.1007/s00572-004-0315-4.
  • Bradshaw AD & Johnson M (1992) Revegetation of metalliferous mine waste: the range of practical techniques used in Western Europe. Elsevier, Manchester.
  • Chu-Chou M (1979) Mycorrhizal fungi of Pinus radiata in New Zealand. Soil Biology and Biochemistry 11: 557−562. doi: 10.1016/0038-0717(79)90021-x.
  • Chu-Chou M & Grace LJ (1981) Mycorrhizal fungi of Pseudotsuga menziesii in the north island of New Zealand. Soil Biology and Biochemistry 13: 247−249.
  • Chu-Chou M & Grace LJ (1988) Mycorrhizal fungi of radiata pine in different forests of the north and south islands in New Zealand. Soil Biology and Biochemistry 20: 883−886. doi: 10.1016/0038-0717(88)90098-3.
  • Colpaert JV, Wevers JHL, Krznaric E & Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Annals of Forest Science 68: 17−24. doi: 10.1007/s13595-010-0003-9.
  • Compton JE, Hooker TD & Perakis SS (2007) Ecosystem N distribution and δ15N during a century of forest regrowth after agricultural abandonment. Ecosystems 10: 1197−1208. doi: 10.1007/s10021-007-9087-y.
  • Conesa HM & Schulin R (2010) The Cartagena – La Union mining district (SE Spain): a review of environmental problems and emerging phytoremediation solutions after fifteen years research. Journal of Environmental Monitoring 12: 1225−1233. doi: 10.1039/c000346h.
  • Cramer VA, Hobbs RJ & Standish RJ (2008) What’s new about old fields? Land abandonment and ecosystem assembly. Trends in Ecology & Evolution 23: 104−112. doi: 10.1016/j.tree.2007.10.005.
  • Danielson RM (1991) Temporal changes and effects of amendments on the occurrence of sheathing (ecto-) mycorrhizas of conifers growing in oil sands tailings and coal spoil. Agriculture, Ecosystems & Environment 35: 261−281. doi: 10.1016/0167-8809(91)90054-2.
  • Danielson RM & Visser S (1989) Host response to inoculation and behaviour of introduced and indigenous ectomycorrhizal fungi of jack pine grown on oil-sands tailings. Canadian Journal of Forest Research 19: 1412−1421. doi: 10.1139/x89-216.
  • Danielson RM, Visser S & Parkinson D (1983) Microbial activity and mycorrhizal potential of four overburden types used in the reclamation of extracted oil sands. Canadian Journal of Soil Science 63: 363−375.
  • Deacon JW, Donaldson SJ & Last FT (1983) Sequences and interactions of mycorrhizal fungi on birch. Plant and Soil 71: 257−262. doi: 10.1007/bf02182660.
  • Dickie IA, Koide RT & Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecological Monographs 72: 505−521. doi: 10.1890/0012-9615(2002)072[0505:IOETOM]2.0.CO;2.
  • Dickie IA, Martinez-Garcia LB, Koele N, Grelet GA, Tylianakis JM, Peltzer DA & Richardson SJ (2013) Mycorrhizas and mycorrhizal fungal communities throughout ecosystem development. Plant and Soil 367: 11−39. doi: 10.1007/s11104-013-1609-0.
  • Dickie IA & Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. Journal of Ecology 93: 244−255. doi: 10.1111/j.1365-2745.2005.00977.x.
  • Dickie IA, Schnitzer SA, Reich PB & Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? Journal of Ecology 95: 309−320. doi: 10.1111/j.1365-2745.2006.01202.x.
  • Dickie IA, Yeates GW, St John MG, Stevenson BA, Scott JT, Rillig MC, Peltzer DA, Orwin KH, Kirschbaum MUF, Hunt JE, Burrows LE, Barbour MM & Aislabie J (2011) Ecosystem service and biodiversity trade-offs in two woody successions. Journal of Applied Ecology 48: 926−934. doi: 10.1111/j.1365-2664.2011.01980.x.
  • Ding Q, Liang Y, Legendre P, He X-h, Pei K-q, Du X-j & Ma K-p (2011) Diversity and composition of ectomycorrhizal community on seedling roots: the role of host preference and soil origin. Mycorrhiza 21: 669−680. doi: 10.1007/s00572-011-0374-2.
  • Dominik T (1961) Badania nad przeszczepianiem mikrobiocenoz gleb leśnych na tereny rolne. Prace Instytutu Badawczego Leśnictwa 210: 103−162.
  • Egler FE (1954) Vegetation science concepts. I. Initial floristic composition – a factor in old-field vegetation development. Vegetatio 4: 412−417.
  • Falińska K (2003) Alternative pathways of succession: species turnover patterns in meadows abandoned for 30 years. Phytocoenosis 15(N.S.) Archivum Geobotanicum 9: 1−104.
  • Faliński JB (1986) Vegetation dynamics in temperate lowland primeval forests. Ecological studies in Białowieża Forest. Dr W. Junk Publishers, Dordrecht/Boston/Lancaster. Geobotany 8: 1−537.
  • Faliński JB (1998) Dioecious woody pioneer species (Juniperus communis, Populus tremula, Salix sp. div.) in the secondary succession and regeneration: Project Return of Forest 2: long-term studies: 1970–1997. Phytocoenosis 10 (N.S.) Supplementum Cartographiae Geobotanicae 8: 1−156.
  • Food and Agriculture Organization of the United Nations (2001) Global Forest Resources Assessment 2000 – Main Report. FAO Forestry Paper 140. FAO, Rome.
  • Gáper J & Lizoň P (1995) Sporocarp succession of mycorrhizal fungi in the Norway spruce plantations in formerly agricultural land: Structure and function of roots (ed. by F Baluška, M Ciamporova, O Gasparikova & PW Barlow) Kluver Academic Publishers, Dordrecht, the Netherlands, pp. 349−352.
  • Gebhardt S, Neubert K, Wöllecke J, Müenzenberger B & Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17: 279−290. doi: 10.1007/s00572-006-0103-4.
  • Glen M, Bougher NL, Colquhoun IJ, Vlahos S, Loneragan WA, O’Brien PA & Hardy GESJ (2008) Ectomycorrhizal fungal communities of rehabilitated bauxite mines and adjacent, natural jarrah forest in Western Australia. Forest Ecology and Management 255: 214−225. doi: 10.1016/j.foreco.2007.09.007.
  • Gömöryová E, Hrivnák R, Janišová M, Ujházy K & Gömöry D (2009) Changes of the functional diversity of soil microbial community during the colonization of abandoned grassland by a forest. Applied Soil Ecology 43: 191−199. doi: 10.1016/j.apsoil.2009.07.007.
  • Grossnickle SC (2005) Importance of root growth in overcoming planting stress. New Forests 30: 273−294. doi: 10.1007/s11056-004-8303-2.
  • Grossnickle SC & Reid CPP (1982) The use of ectomycorrhizal conifer seedlings in the revegetation of a high-elevation mine site. Canadian Journal of Forest Research 12: 354−361.
  • Hedlund K (2002) Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biology and Biochemistry 34: 1299−1307. doi: 10.1016/s0038-0717(02)00073-1.
  • Hedlund K & Gormsen D (2002) Mycorrhizal colonization of plants in set-aside agricultural land. Applied Soil Ecology 19: 71−78. doi: 10.1016/s0929-1393(01)00174-3.
  • Helm DJ & Carling DE (1993) Use of soil transfer for reforestation on abandoned mined lands in Alaska. II. Effects of soil transfers from different successional stages on growth and mycorrhizal formation by Populus balsamifera and Alnus crispa. Mycorrhiza 3: 107−114. doi: 10.1007/bf00208918.
  • Hilszczańska D & Sierota Z (2006) Persistence of ectomycorrhizas by Thelephora terrestris on outplanted Scots pine seedlings. Acta Mycologica 41: 313−318.
  • Hilszczańska D, Sierota Z & Małecka M (2011) Ectomycorrhizal status of Scots pine saplings growing in post-agricultural soils. Polish Journal of Environmental Studies 20: 83−88.
  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87: 563−569. doi: 10.1890/05-0755.
  • Hobbie EA, Jumpponen A & Trappe J (2005) Foliar and fungal 15N : 14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 146: 258−268. doi: 10.1007/s00442-005-0208-z.
  • Högberg P (1997) 15N natural abundance in soil-plant systems. New Phytologist 137: 179−203. doi: 10.1046/j.1469-8137.1997.00808.x.
  • Hrynkiewicz K, Haug I & Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. European Journal of Soil Biology 44: 37−44. doi: 10.1016/j.ejsobi.2007.10.004.
  • Huang J, Nara K, Lian C, Zong K, Peng K, Xue S & Shen Z (2012) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb-Zn mine sites of central south China. Mycorrhiza 22: 589−602. doi: 10.1007/s00572-012-0436-0.
  • Huang J, Nara K, Zong K, Wang J, Xue S, Peng K, Shen Z & Lian C (2014) Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana) and white oak (Quercus fabri) in a manganese mining region in Hunan Province, China. Fungal Ecology 9: 1−10. doi: 10.1016/j.funeco.2014.01.001.
  • Hüttl RF & Weber E (2001) Forest ecosystem development in post-mining landscapes: a case study of the Lusatian lignite district. Naturwissenschaften 88: 322−329. doi: 10.1007/s001140100241.
  • Jagodziński AM & Kałucka I (2010) Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap. Dendrobiology 64: 19−30.
  • Jagodziński AM & Kałucka I (2011) Fine root biomass and morphology in an age-sequence of post-agricultural Pinus sylvestris L. stands. Dendrobiology 66: 71−84.
  • Jagodziński AM, Kałucka I, Horodecki P & Oleksyn J (2014) Aboveground biomass allocation and accumulation in a chronosequence of young Pinus sylvestris stands growing on a lignite mine spoil heap. Dendrobiology 72: 139−150. doi: 10.12657/denbio.072.012.
  • Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J & Lebrun M (2010) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Tree Physiology 30: 1311−1319. doi: 10.1093/treephys/tpq070.
  • Kałucka I (2009) Macrofungi in the secondary succession on the abandoned farmland near the Bialowieza old-growth forest. Monographiae Botanicae 99: 1−155.
  • Kałucka I & Jagodziński AM (2013) Ectomycorrhizal fungi and carbon dynamics in forest ecosystems. Sylwan 157: 817−830.
  • Klironomos J, Zobel M, Tibbett M, Stock WD, Rillig MC, Parrent JL, Moora M, Koch AM, Facelli JM, Facelli E, Dickie IA & Bever JD (2011) Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New Phytologist 189: 366−370. doi: 10.1111/j.1469-8137.2010.03550.x.
  • Krpata D, Peintner U, Langer I, Fitz WJ & Schweiger P (2008) Ectomycorrhizal communities associated with Populus tremula growing on a heavy metal contaminated site. Mycological Research 112: 1069−1079. doi: 10.1016/j.mycres.2008.02.004.
  • Lambers H, Raven JA, Shaver GR & Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution 23: 95−103. doi: 10.1016/j.tree.2007.10.008.
  • Last FT, Mason PA, Wilson J & Deacon JW (1983) Fine roots and sheathing mycorrhizas: their formation, function and dynamics. Plant and Soil 71: 9−21. doi: 10.1007/bf02182637.
  • Leski T, Pietras M & Rudawska M (2010) Ectomycorrhizal fungal communities of pedunculate and sessile oak seedlings from bare-root forest nurseries. Mycorrhiza 20: 179−190. doi: 10.1007/s00572-009-0278-6.
  • Lunt PH & Hedger JN (2003) Effects of organic enrichment of mine spoil on growth and nutrient uptake in oak seedlings inoculated with selected ectomycorrhizal fungi. Restoration Ecology 11: 125−130. doi: 10.1046/j.1526-100X.2003.09968.x.
  • Macdonald SE, Landhäusser SM, Skousen J, Franklin J, Frouz J, Hall S, Jacobs DF & Quideau S (2015) Forest restoration following surface mining disturbance: challenges and solutions. New Forests 46: 703-732. doi: 10.1007/s11056-015-9506-4.
  • Malajczuk N, Reddell P & Brundrett M (1994) Role of ectomycorrhizal fungi in minesite reclamation: Mycorrhizae and plant health (ed. by FL Pfleger & RG Linderman) The American Phytopathological Society Symposium Series, APS Press, Minnesota, pp. 83−100.
  • Marx DH (1975) Mycorrhizae and establishment of trees on strip-mined land. The Ohio Journal of Science 75: 288−297.
  • Marx DH (1977) Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Canadian Journal of Microbiology 23: 217−223.
  • Marx DH, Marrs LF & Cordell CE (2002) Practical use of the mycorrhizal fungal technology in forestry, reclamation, arboriculture, agriculture, and horticulture. Dendrobiology 47: 27−40.
  • Mason PA, Last FT, Pelham J & Ingleby K (1982) Ecology of some fungi associated with an ageing stand of birches (Betula pendula and Betula pubescens). Forest Ecology and Management 4: 19−39. doi: 10.1016/0378-1127(82)90026-3.
  • Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J & Finlay R (2007) Afforestation of abandoned farmland with conifer seedlings inoculated with three ectomycorrhizal fungi-impact on plant performance and ectomycorrhizal community. Mycorrhiza 17: 337−348. doi: 10.1007/s00572-007-0110-0.
  • Mihál I (1999) Production of fruiting bodies of ectomycorrhizal fungi in spruce monocultures planted on former arable land. Ekologia (Bratislava) 18: 125−133.
  • Münzenberger B, Golldack J, Ullrich A, Schmincke B & Hüttl RF (2004) Abundance, diversity, and vitality of mycorrhizae of Scots pine (Pinus sylvestris L.) in lignite recultivation sites. Mycorrhiza 14: 193−202. doi: 10.1007/s00572-003-0257-2.
  • Olszewska M & Smal H (2008) The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. I. Physical and sorptive properties. Plant and Soil 305: 157−169. doi: 10.1007/s11104-008-9537-0.
  • Onwuchekwa NE, Zwiazek JJ, Quoreshi A & Khasa DP (2014) Growth of mycorrhizal jack pine (Pinus banksiana) and white spruce (Picea glauca) seedlings planted in oil sands reclaimed areas. Mycorrhiza 24: 431−441. doi: 10.1007/s00572-014-0555-x.
  • Pachlewski R (1956) Badania mikotrofizmu naturalnych zespołów roślinnych na hałdach żużlowo-łupkowych w Wałbrzychu. Roczniki Nauk Leśnych 14: 267−292.
  • Pachlewski R (1958) Badania mikotrofizmu naturalnych zespołów roślinnych na hałdach górniczych w Knurowie i Gliwicach na Górnym Śląsku. Prace Instytutu Badawczego Leśnictwa 182: 173−209.
  • Parraga-Aguado I, Querejeta J-I, González-Alcaraz M-N, Jiménez-Cárceles FJ & Conesa HM (2014) Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: Grasses vs. shrubs vs. trees. Journal of Environmental Management 133: 51−58. doi: 10.1016/j.jenvman.2013.12.001.
  • Pietras M, Rudawska M, Leski T & Karliński L (2013) Diversity of ectomycorrhizal fungus assemblages on nursery grown European beech seedlings. Annals of Forest Science 70: 115−121. doi: 10.1007/s13595-012-0243-y.
  • Read DJ (1991) Mycorrhizas in Ecosystems. Experientia 47: 376−391. doi: 10.1007/bf01972080.
  • Read DJ & Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems – a journey towards relevance? New Phytologist 157: 475−492. doi: 10.1046/j.1469-8137.2003.00704.x.
  • Reddell P, Gordon V & Hopkins MS (1999) Ectomycorrhizas in Eucalyptus tetrodonta and E. miniata forest communities in tropical northern Australia and their role in the rehabilitation of these forests following mining. Australian Journal of Botany 47: 881−907. doi: 10.1071/bt97126.
  • Richter DD, Markewitz D, Heine PR, Jin V, Raikes J, Tian K & Wells CG (2000) Legacies of agriculture and forest regrowth in the nitrogen of old-field soils. Forest Ecology and Management 138: 233−248. doi: 10.1016/s0378-1127(00)00399-6.
  • Rincón A, de Felipe MR & Fernández-Pascual M (2007) Inoculation of Pinus halepensis Mill. with selected ectomycorrhizal fungi improves seedling establishment 2 years after planting in a degraded gypsum soil. Mycorrhiza 18: 23−32. doi: 10.1007/s00572-007-0149-y.
  • Rincón A, Ruíz-Díez B, Fernández-Pascual M, Probanza A, Pozuelo JM & de Felipe MR (2006) Afforestation of degraded soils with Pinus halepensis Mill.: Effects of inoculation with selected microorganisms and soil amendment on plant growth, rhizospheric microbial activity and ectomycorrhizal formation. Applied Soil Ecology 34: 42−51. doi: 10.1016/j.apsoil.2005.12.004.
  • Russell WB & La Roi GH (1986) Natural vegetation and ecology of abandoned coal mined land, Rocky Mountain Foothills, Alberta, Canada. Canadian Journal of Botany 64: 1286−1298. doi:10.1139/b86-177.
  • Schramm JR (1966) Plant colonization studies on black wastes from anthracite mining in Pennsylvania. Transactions of the American Philosophical Society 56: 5−189.
  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ & Teste FP (2012) Mycorrhizal networks: Mechanisms, ecology and modelling. Fungal Biology Reviews 26: 39−60. doi:10.1016/j.fbr.2012.01.001.
  • Simard SW, Jones MD & Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants: Mycorrhizal Ecology (ed. by MGA van der Heijden & IR Sanders) Ecological Studies 157: 33−74.
  • Smal H & Olszewska M (2008) The effect of afforestation with Scots pine (Pinus silvestris L.) of sandy post-arable soils on their selected properties. II. Reaction, carbon, nitrogen and phosphorus. Plant and Soil 305: 171−187. doi: 10.1007/s11104-008-9538-z.
  • Smith SE & Read DJ (2008) Mycorrhizal Symbiosis. 3rd edn. Academic Press.
  • Stanturf JA, Palik BJ & Dumroese RK (2014) Contemporary forest restoration: A review emphasizing function. Forest Ecology and Management 331: 292−323. doi: 10.1016/j.foreco.2014.07.029.
  • Staudenrausch S, Kaldorf M, Renker C, Luis P & Buscot F (2005) Diversity of the ectomycorrhiza community at a uranium mining heap. Biology and Fertility of Soils 41: 439−446. doi: 10.1007/s00374-005-0849-4.
  • Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, van Doorn A, de Snoo GR, Rakosy L & Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe – A review. Journal of Environmental Management 91: 22−46. doi: 10.1016/j.jenvman.2009.07.005.
  • Symonides E (1986) Seed bank in old-field successional ecosystems. Ekologia Polska – Polish Journal of Ecology 34: 3−29.
  • Szujecki A (1990) Ekologiczne aspekty odtwarzania ekosystemów leśnych na gruntach porolnych. Sylwan 134: 23−40.
  • Thiet RK & Boerner REJ (2007) Spatial patterns of ectomycorrhizal fungal inoculum in arbuscular mycorrhizal barrens communities: implications for controlling invasion by Pinus virginiana. Mycorrhiza 17: 507−517. doi: 10.1007/s00572-007-0123-8.
  • Tokuoka Y, Ohigashi K & Nakagoshi N (2011) Limitations on tree seedling establishment across ecotones between abandoned fields and adjacent broad-leaved forests in eastern Japan. Plant Ecology 212: 923−944. doi: 10.1007/s11258-010-9868-9.
  • Trappe JM & Luoma DL (1992) The Ties That Bind: Fungi in Ecosystems: The Fungal Community. Its Organization and Role in the Ecosystem. 2nd ed. (ed. by GC Carrol & DT Wicklow) Marcel Dekker, Inc., New York, Basel, Hong Kong, pp. 17−27.
  • van Breugel M, Ransijn J, Craven D, Bongers F & Hall JS (2011) Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models. Forest Ecology and Management 262: 1648−1657. doi: 10.1016/j.foreco.2011.07.018.
  • van der Heijden MGA & Horton TR (2009) Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. Journal of Ecology 97: 1139−1150. doi: 10.1111/j.1365-2745.2009.01570.x.
  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A & Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69−72.
  • van der Putten WH, Mortimer SR, Hedlund K, Van Dijk C, Brown VK, Lepä J, Rodriguez-Barrueco C, Roy J, Len TAD, Gormsen D, Korthals GW, Lavorel S, Santa Regina I & Smilauer P (2000) Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach. Oecologia 124: 91−99. doi: 10.1007/s004420050028.
  • van der Wal A, van Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, van der Putten WH & de Boer W (2006) Fungal biomass development in a chronosequence of land abandonment. Soil Biology and Biochemistry 38: 51−60. doi: 10.1016/j.soilbio.2005.04.017.
  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytologist 129: 389−401. doi: 10.1111/j.1469-8137.1995.tb04309.x.
  • von Oheimb G, Härdtle W, Naumann PS, Westphal C, Assmann T & Meyer H (2008) Long-term effects of historical heathland farming on soil properties of forest ecosystems. Forest Ecology and Management 255: 1984−1993. doi: 10.1016/j.foreco.2007.12.021.
  • Wiemken V & Boller T (2006) Delayed succession from alpine grassland to savannah with upright pine: Limitation by ectomycorrhiza formation? Forest Ecology and Management 237: 492−502. doi: 10.1016/j.foreco.2006.09.084.
  • Xu D, Dell B, Malajczuk N & Gong M (2001) Effects of P fertilisation and ectomycorrhizal fungal inoculation on early growth of eucalypt plantations in southern China. Plant and Soil 233: 47−57. doi: 10.1023/a:1010355620452.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0732d185-0a07-4988-965b-d82af45e22c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.