EN
Anthropogenic disturbances, such as tillage, management practices, and fertilization, can influence soil microbial communities, but little is known about the effects of land use type on soil fungal communities. In this study, fungal abundance, diversity and community composition in soils were analyzed, to determine the impacts of different agricultural land use types, including old rice paddies (ORP), the long-term and (LTV), short-term (STV) cultivation of vegetables and Magnolia nursery plantations (MNP). Compared to the soils in ORP, the fungal abundance, determined by real-time quantitative polymerase chain reaction, was significantly higher in soils from LTV fields and lower in those from MNP; the copy numbers of the fungal ITS genes in the LTV soils were 30 times greater than in the MNP soils. The terminal restriction fragment length polymorphism (T-RFLP) results showed that the fungal community composition was obviously different in the different soils, based on land use type. Only three T-RFs were found in the soils from the LTV fields, followed by seven in the STV soils and nine in the MNP soils; the most (11) T-RFs were found in the ORP soils. Of the measured soil chemical properties, SOC, available P and NO₃⁻-N were the dominant factors that influenced the fungal communities based on the canonical correspondence analysis (CCA). The present study showed that conversion from paddy soil to vegetable cultivation changed soil properties, decreased soil fungal diversity, increased fungal abundance, and shifted fungal community composition.