PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 23 | 1 |

Tytuł artykułu

Wastewater flocculation using a new hybrid copolymer: modeling and optimization by response surface methodology

Autorzy

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
A new hybrid inorganic-organic copolymer, aluminum chloride-poly(acrylamide-co-acrylic acid), was prepared using the free radical polymerization method and employed in this study. The hybrid copolymer was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS). This hybrid copolymer was used in the flocculation of wastewater as a new flocculant. The design variables in the flocculation experiments were hybrid copolymer dosage and wastewater pH. The central composite design (CCD) for the response surface methodology (RSM) approach was used to develop a mathematical model and to optimize the parameters of the flocculation process in terms of optimal removal of chemical oxygen demand (COD), total suspended solids (TSS), and turbidity. After applying the analysis of variance (ANOVA) of all quadratic models, it was found that the obtained value of the correlation coefficient (R2) was more than 0.98 for all models. The optimum hybrid copolymer dosage was 125 mg/l and the optimum pH 7.55. Under these optimum values, the wastewater treatment achieved 97%, 98.6%, and 88.6% removal of turbidity, TSS, and COD, respectively.

Wydawca

-

Rocznik

Tom

23

Numer

1

Opis fizyczny

p.43-50,fig.,ref.

Twórcy

autor
  • Environmental Studies Faculty, China University of Geosciences, Wuhan 430074, China
  • Faculty of Engineering, University of Basrah, Basrah, Iraq
autor
  • Environmental Studies Faculty, China University of Geosciences, Wuhan 430074, China

Bibliografia

  • 1. GAO J., CHEN S., WANG W., YAN Q., JIANG N., RUIQIN Z. Effects of Unpowered Complex EcoTechnology on Sewage Purification in Central Chinese Rural Areas. Pol. J. Environ. Stud. 21, (6), 1595, 2012.
  • 2. AGUILAR M. I., SAEZ J., LLORÉNS M., SOLER A., ORTUNO J. F., MESEGUER V., FUENTES A. Improvement of coagulation-flocculation process using anionic polyacrylamide as coagulant aid. Chemosphere. 58, (1), 47, 2005.
  • 3. DELGADO S., DIAZ F., GARCIA D., OTERO N. Behaviour of inorganic coagulants in secondary effluents from a conventional wastewater treatment plant. Filtr. Separat. 40, (7), 42, 2003.
  • 4. ZENG Y., PARK J. Characterization and coagulation performance of a novel inorganic polymer coagulant – Polyzinc-silicate-sulfate. Colloid Surface A. 334, (1), 147, 2009.
  • 5. DUAN, J., GREGORY J. Coagulation by hydrolysing metal salts. Adv. Colloid Interfac. 100, 475, 2003.
  • 6. AHMAD A.L., SUMATHI S., HAMEED B.H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem. Eng. J. 118, (1), 99, 2006.
  • 7. TZOUPANOS N., ZOUBOULIS A., TSOLERIDIS C. A systematic study for the characterization of a novel coagulant (polyaluminium silicate chloride). Colloid Surface A. 342, (1), 30, 2009.
  • 8. GARCIA M. C., SZOGI A. A., VANOTTI M. B., CHASTAIN J. P., MILLNER P. D. Enhanced solid-liquid separation of dairy manure with natural flocculants. Bioresource Technol. 100, (22), 5417, 2009.
  • 9. RENAULT F., SANCEY B., CHARLES J., MORIN-CRINI N., BADOT P.-M., WINTERTON P., CRINI G. Chitosan flocculation of cardboard-mill secondary biological wastewater. Chem. Eng. J. 155, (3), 775, 2009.
  • 10. AMUDA O., AMOO I. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. H. Mater. 141, (3), 778, 2007.
  • 11. TANG H., SHI B. The characteristics of composite flocculants synthesised with inorganic poly-aluminium and organic polymers. Chemical Water and Wastewater Treatment VII, HH Hahn, E. Hofmann and H. Odegaard, Eds., IWA Publishing, London. pp. 17-28, 2002.
  • 12. BHATIA S., OTHMAN Z., AHMAD A.L. Coagulationflocculation process for POME treatment using Moringa oleifera seeds extract: Optimization studies. Chem. Eng. J. 133,(1), 205, 2007.
  • 13. KHAYET M., ZAHRIM A., HILAL N. Modelling and optimization of coagulation of highly concentrated industrial grade leather dye by response surface methodology. Chem. Eng. J. 167, (1), 77, 2011.
  • 14. PUJARI V., CHANDRA T. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii. Process Biochem. 36, (1), 31, 2000.
  • 15. RASTEGAR M., RAHMATI SHADBAD K., KHATAEE A. R., POURRAJAB R. Optimization of photocatalytic degradation of sulphonated diazo dye CI Reactive Green 19 using ceramic-coated TiO2 nanoparticles. Environ. Technol. 33, (9), 995, 2012.
  • 16. AZIZ SHUOKR QARANI, HAMIDI ABDUL AZIZ, MOHD SUFFIAN YUSOFF, MOHAMMED JK BASHIR, Landfill leachate treatment using powdered activated carbon augmented sequencing batch reactor (SBR) process: Optimization by response surface methodology. J. Hazard. Mater., 189, (1-2), 404, 2011.
  • 17. WONG S. S., TENG T. T., AHMAD A. L., ZUHAIRI A., NAJAFPOUR G. Treatment of pulp and paper mill wastewater by polyacrylamide (PAM) in polymer induced flocculation. J. Hazard. Mater. 135, (1), 378, 2006.
  • 18. BHATTACHARYYA S., CHAKRABORTY S., DATTA S., DRIOLI E., BHATTACHARJEE C. Production of total reducing sugar (TRS) from acid hydrolysed potato peels by sonication and its optimization. Environ. Technol. 34, (9), 1077, 2013.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-06a0846f-fff9-4991-bca1-88110d618d11
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.