PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 3 |

Tytuł artykułu

Proteome changes in ileal mucosa of young pigs resulting from different levels of native chicory inulin in the diet

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The analysis of mucosa proteomes was performed using a twodimensional electrophoresis combined with mass spectrometry to determine the effect of dietary level of inulin on protein expression patterns in the ileum. The experiment was carried out on 24 castrated male piglets, allocated to three groups, fed from the day 10 of life an unsupplemented diet (C) or diet supplemented with 1% (T1) or 3% (T2) of native chicory inulin. Samples of ileal tissue and blood were collected after 40 days of feeding. Comparative proteomic analysis of the T1 group showed 10 protein spots with a decreased expression, whereas the T2 diet caused overexpression of 24 spots in comparison to the C diet. Inulin levels differed in their effects on the expression of ileal proteins involved in intracellular molecular mechanisms controlling cell division and growth. The T1 diet down-regulated, whereas the T2 diet induced substantial up-regulation of proteins engaged in transcriptional and translational activities, folding and posttranslational modifications, which may indicate stimulation of epithelial cell proliferation. Inulin did not affect plasma levels of phosphorus, magnesium, calcium and iron in piglets but improved plasma prooxidant-antioxidant balance in animals fed the T2 diet. The results of this study might be considered as preliminary since further confirmation using more sophisticated quantitative proteomic tools is required to better understand and answer the unresolved issues concerning the mechanism underlying the inulin effect on the ileum in growing pigs. Nevertheless, a general insight into how inulin molecules or their fermentation end-products may induce changes in protein expression patterns in the ileum was presented.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

27

Numer

3

Opis fizyczny

p.229-297,fig.,ref.

Twórcy

  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
autor
  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences Instytucka 3, 05-110 Jablonna, Poland
  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences Instytucka 3, 05-110 Jablonna, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences Instytucka 3, 05-110 Jablonna, Poland
autor
  • Department of Physiology, Cytobiology and Proteomics, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland
autor
  • Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences Instytucka 3, 05-110 Jablonna, Poland

Bibliografia

  • Barszcz M., Taciak M., Skomiał J., 2018. Influence of different inclusion levels and chain length of inulin on microbial ecology and the state of mucosal protective barrier in the large intestine of young pigs. Anim. Prod. Sci. 58, 1109–1118, https://doi.org/10.1071/AN16014
  • Böhmer B.M., Branner G.R., Roth-Maier D.A., 2005. Precaecal and faecal digestibility of inulin (DP 10–12) or an inulin/Enterococcus faecium mix and effects on nutrient digestibility and microbial gut flora. J. Anim. Physiol. Anim. Nutr. 89, 388–396, https://doi.org/10.1111/j.1439-0396.2005.00530.x
  • Burrin D.G., Petersen Y., Stoll B., Sangild P., 2001. Glucagon-like peptide 2: a nutrient-responsive gut growth factor. J. Nutr. 131, 709–712, https://doi.org/10.1093/jn/131.3.709
  • Herosimczyk A., Lepczyński A., Ożgo M., Barszcz M., JaszczukKubiak E., Pierzchała M., Tuśnio A., Skomiał J., 2017. Hepatic proteome changes induced by dietary supplementation with two levels of native chicory inulin in young pigs. Livest. Sci. 203, 54–62, https://doi.org/10.1016/j.livsci.2017.07.004
  • Ilari A., Fiorillo A., Poser E., Lalioti V.S., Sundell G.N., Ivarsson Y., Genovese I., Colotti G., 2015. Structural basis of Sorcinmediated calcium-dependent signal transduction. Sci. Rep. 5, 16828, https://doi.org/10.1038/srep16828
  • Kien C.L., Blauwiekel R., Bunn J.Y., Jetton T.L., Frankel W.L., Holst J.J., 2007. Cecal infusion of butyrate increases intestinal cell proliferation in piglets J. Nutr. 137, 916–922, https://doi.org/10.1093/jn/137.4.916
  • Kien C.L., Schmitz-Brown M., Solley T., Sun D., Frankel W.L., 2006. Increased colonic luminal synthesis of butyric acid is associated with lowered colonic cell proliferation in piglets. J. Nutr. 136, 64–69, https://doi.org/10.1093/jn/136.1.64
  • Koliakos G., Hamidi Alamdari D., 2009. Measurement of the oxidantsantioxidants balance in liquids. United States Patent Application Publication No. US 2009/0123956 A1 (USA)
  • Konstantinov S.R., Poznanski E., Fuentes S., Akkermans A.D.L., Smidt H., de Vos W.M., 2006. Lactobacillus sobrius sp. nov., abundant in the intestine of weaning piglets. Int. J. Syst. Evol. Microbiol. 56, 29–32, https://doi.org/10.1099/ijs.0.63508-0
  • Lepczyński A., Herosimczyk A., Barszcz M., Ożgo M., Taciak M., Skomiał J., 2016. Inulin-type fructans trigger changes in iron concentration and activity of bone metabolism biomarkers in blood plasma of growing pigs. J. Anim. Feed Sci. 25, 343–347, https://doi.org/10.22358/jafs/67471/2016
  • Lepczyński A., Herosimczyk A., Ożgo M., Marynowska M., Pawlikowska M., Barszcz M., Taciak M., Skomiał J., 2017. Dietary chicory root and chicory inulin trigger changes in energetic metabolism, stress prevention and cytoskeletal proteins in the liver of growing pigs – a proteomic study. J. Anim. Physiol. Anim. Nutr. 101, e225–e236, https://doi.org/10.1111/jpn.12595
  • Loh G., Eberhard M., Brunner R.M., Hennig U., Kuhla S., Kleessen B., Metges C.C., 2006. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet. J. Nutr. 136, 1198–1202, https://doi.org/10.1093/jn/136.5.1198
  • Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., HinrichsW.L.J., 2015. Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydr. Polym. 130, 405–419, https://doi.org/10.1016/j.carbpol.2015.05.026
  • Mullen L., Hanschmann E.-M., Lillig C.H., Herzenberg L.A., Ghezzi P., 2015. Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal release through a novel mechanism of redoxdependent secretion. Mol. Med. 21, 98–108, https://doi.org/10.2119/molmed.2015.00033
  • Niness K.R., 1999. Inulin and oligofructose: what are they? J. Nutr. 129, 1402S–1406S, https://doi.org/10.1093/jn/129.7.1402S
  • Pasqualetti V., Altomare A., Guarino M.P.L., Locato V., Cocca S., Cimini S., Palma R., Alloni R., De Gara L., Cicala M., 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLoS ONE 9, e98031, https://doi.org/10.1371/journal.pone.0098031
  • Paßlack N., Al-samman M., Vahjen W., Männer K., Zentek J., 2012. Chain length of inulin affects its degradation and the microbiota in the gastrointestinal tract of weaned piglets after a shortterm dietary application. Livest. Sci. 149, 128–136, https://doi.org/10.1016/j.livsci.2012.07.005
  • Patterson J.K., Yasuda K., Welch R.M., Miller D.D., Lei X.G., 2010. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J. Nutr. 140, 2158–2161, https://doi.org/10.3945/jn.110.130302
  • Pirman T., Ribeyre M.C., Mosoni L., Rémond D., Vrecl M., Salobir J., Patureau Mirand P., 2007. Dietary pectin stimulates protein metabolism in the digestive tract. Nutrition 23, 69–75, https://doi.org/10.1016/j.nut.2006.09.001
  • Ramana K.V., Bhatnagar A., Srivastava S., Yadav U.C., Awasthi S., Awasthi Y.C., Srivastava S.K., 2006. Mitogenic responses of vascular smooth muscle cells to lipid peroxidation-derived aldehyde 4-hydroxy-trans-2-nonenal (HNE): role of aldose reductase-catalyzed reduction of the HNE-glutathione conjugates in regulating cell growth. J. Biol. Chem. 281, 17652–17660, https://doi.org/10.1074/jbc.M600270200
  • Reddy A.B.M., Srivastava S.K., Ramana K.V., 2009. Anti-inflammatory effect of aldose reductase inhibition in murine polymicrobial sepsis. Cytokine 48, 170–176, https://doi.org/10.1016/j.cyto.2009.07.004
  • Ribet D., Cossart P., 2015. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect. 17, 173–183, https://doi.org/10.1016/j.micinf.2015.01.004
  • Srivastava S.K., Yadav U.C.S., Reddy A.B.M. et al., 2011. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact. 191, 330–338, https://doi.org/10.1016/j.cbi.2011.02.023
  • Tappenden K.A., Albin D.M., Bartholome A.L., Mangian H.F., 2003. Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story. J. Nutr. 133, 3717–3720, https://doi.org/10.1093/jn/133.11.3717
  • Tsukahara T., Iwasaki Y., Nakayama K., Ushida K., 2003. Stimulation of butyrate production in the large intestine of weaning piglets by dietary fructooligosaccharides and its influence on the histological variables of the large intestinal mucosa. J. Nutr. Sci. Vitaminol. (Tokyo) 49, 414–421, https://doi.org/10.3177/jnsv.49.414
  • Wang K., Wu L.-y., Dou C.-z., Guan X., Wu H.-g., Liu H.-r., 2016. Research advance in intestinal mucosal barrier and pathogenesis of Crohn’s disease. Gastroenterol. Res. Pract. 2016,9686238, https://doi.org/10.1155/2016/9686238
  • Yasuda K., Maiorano R., Welch R.M., Miller D.D., Lei X.G., 2007. Cecum is the major degradation site of ingested inulin in young pigs. J. Nutr. 137, 2399–2404, https://doi.org/10.1093/jn/137.11.2399
  • Ye Y., Tang W.K., Zhang T., Xia D., 2017. A mighty “Protein Extractor” of the cell: structure and function of the p97/CDC48 ATPase. Front. Mol. Biosci. 4, 39, https://doi.org/10.3389/fmolb.2017.00039

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-0637c9d0-5d1f-4bc5-9f98-0faa45760067
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.