PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | 67 | 2 |

Tytuł artykułu

Effect of high pressure and sub-zero temperature on total antioxidant capacity and the content of vitamin C, fatty acids and secondary products of lipid oxidation in human milk

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The objective of this study was to compare of the effects of high pressure of 193 MPa at -20°C and Low Temperature Long Time pasteurization (LTLT or holder pasteurization, 62.5°C, 30 min) on the content and composition of fatty acids (FAs), concentrations of secondary products of lipid oxidation (TBARS), the total antioxidant capacity (TAC), total vitamin C and ascorbic acid (AsA) content in human milk. It was shown that no signifi - cant changes in the content and composition of FAs and TBARS levels were noted in both pressurized and LTLT pasteurized milk samples. The results obtained indicate that the antioxidant properties in pressurized human milk were also not affected. In the case of the pasteurized samples only slight (approx. 6%) and statistically insignificant decrease was observed in the Trolox equivalent antioxidant capacity (TEAC) values. Pasteurization signifi - cantly reduced the content of total vitamin C and AsA, by 35% and 24%, respectively. A minor and statistically insignificant (approx. 6%) decrease in vitamin C levels was observed in milk treated with high pressure. However, a significant decrease (by more than 11%) occurred in these conditions in AsA concentrations. The influence of high pressure treatment on AsA levels and the lack of significant changes in TEAC values point to the relative stability of the remaining antioxidant components in human milk. Further research is needed to determine the effects of high pressure of approximately 200 MPa and sub-zero temperatures on, mainly thermolabile, components of human milk, which are degraded by LTLT pasteurization.

Słowa kluczowe

Wydawca

-

Rocznik

Tom

67

Numer

2

Opis fizyczny

P.117-122,ref.

Twórcy

  • Chemical Faculty, Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80–233 Gdansk, Poland
autor
  • Chemical Faculty, Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80–233 Gdansk, Poland
autor
  • Chemical Faculty, Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80–233 Gdansk, Poland
autor
  • Chemical Faculty, Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80–233 Gdansk, Poland
  • Chemical Faculty, Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80–233 Gdansk, Poland
  • Department of Obstetrics, Medical University of Gdansk, Kliniczna Street 1a, 80- 402 Gdansk, Poland
  • Chemical Faculty, Department of Food Chemistry, Technology and Biotechnology, Gdansk University of Technology, G. Narutowicza Street 11/12, 80–233 Gdansk, Poland

Bibliografia

  • 1. Canfield L.M., Clandinin M.T., Davies D.P., Multinational study of major breast milk carotenoids of healthy mothers. Eur. J. Nutr., 2003, 42, 133–141.
  • 2. Delgado F.J., Cava R., Delgado J., Ramirez R., Tocopherols, fatty acids and cytokines content of holder pasteurized and highpressure processed human milk. Dairy Sci. Technol., 2014, 94, 145–156.
  • 3. Emmett P.M., Rogers I.S., Properties of human milk and their relationship with maternal nutrition. Early Hum. Dev., 1997, 49, S7-S28.
  • 4. Ermis B., Yildirim A., Örs R., Tastekin A., Ozkan B., influence of smoking on serum and milk malondialdehyde, superoxide dismutase, glutathione peroxidase, and antioxidant potential levels in mothers at the postpartum seventh day. Biol. Trace Elem. Res., 2005, 105, 27–36.
  • 5. Esterbauer H., Schaur R.J., Zollner H., Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Rad. Biol. Med., 1991, 11, 81–128.
  • 6. Friel J.K., Friesen R.W., Harding S.V., Roberts L.J., Evidence of oxidative stress in full term healthy infants. Pediatr. Res., 2004, 56, 878–882.
  • 7. Hayakawa K., Ueno Y., Kawamura S., Kato T., Hayashi R., Microorganism inactivation using high pressure generation in sealed vessels under sub-zero temperature. Appl. Microbiol. Biotechnol., 1998, 50, 415–418.
  • 8. Innis S.M., King D.J., Trans fatty acids in human milk are inversely associated with concentration of essential all-cis n-6 and n-3 fatty acids and determine trans, but not n-6 and n-3, fatty acids in plasma lipids and breast-fed infants. Am. J. Clin. Nutr., 1999, 70, 383–390.
  • 9. Januszewicz P., Stolarczyk A., Socha P., Socha J., Co należy uwzględnić w Polskim Konsensusie Tłuszczowym w odniesieniu do żywienia niemowląt i dzieci? Pediatr. Współcz. Gastroenterol. Hepatol. Żywienie Dziecka, 1999, 1,2/3, 133–138 (in Polish).
  • 10. Kent J.C., Mitoulas L.R., Cregan M.D., Ramsay D.T., Doherty D.A., Hartmann P.E., Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics, 2006, 117, 3, E340-E387.
  • 11. Malinowska-Pańczyk E., Kolodziejska I., Murawska D., Wolosewicz G., The combined effect of moderate pressure and chitosan on Escherichia coli and Staphylococcus aureus cells suspended in a buffer and on natural microflora of apple juice and minced pork. Food Technol. Biotechnol., 2009, 47, 202–209.
  • 12. Martysiak-Żurowska D., Wenta W., A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Alim., 2012, 11, 83–89.
  • 13. Mazri C., Sanchez L., Ramos S.J., Calvo M., Pérez M.D., Effect of high-pressure treatment on denaturation of bovine lactoferrin and lactoperoxidase. J. Dairy Sci., 2012, 95, 549–557.
  • 14. Moltó-Puigmarti C., Permanyer M., Castellote A.I., López-Sabater M.C., Effects of pasteurization and high-pressure processing on vitamin C, tocopherols and fatty acids in mature human milk. Food Chem., 2011, 124, 697–702.
  • 15. Pandya Y., Jewett F., Hoover D.G., Concurrent effects of high hydrostatic pressure, acidity and heat on the destruction and injury of yeasts. J. Food Prot., 1995, 58, 301–304.
  • 16. Permanyer M., Castellote C., Ramirez-Santana C., Audi C., Perez-Cano F.J., Castell M., Lopez-Sabater M.C., Franch A., Maintenance of breastmilk immunoglobulin A after high pressure processing. J. Dairy Sci., 2010, 93, 877–883.
  • 17. Prior R.L., Wu X., Schaich K., Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric. Food Chem., 2005, 53, 4290–4302.
  • 18. PN-EN ISO 1211:2011. Milk – Determination Of Fat Content – Gravimetric Method (Reference Method).
  • 19. PN-EN ISO 12966–2:2011. Animal and vegetable fats and oils – Gas chromatography of fatty acid methyl esters – Part 2: Preparation of methyl esters of fatty acids (ISO 12966–2:2011).
  • 20. PN-EN ISO 5508:1996. Animal And Vegetable Fats And Oils – Analysis By Gas Chromatography Of Methyl Esters Of Fatty Acids.
  • 21. Reyns K.M.F.A., Sootjens C.C.F., Cornelis K., Weemaes C.A., Hendrickx E., Michiels Ch.W., Kinetic analysis and modeling of combined high-pressure-temperature inactivation of the yeast Zygosaccharomyces bailii. Int. J. Food Microbiol., 2000, 56, 199– –210.
  • 22. Romeu-Nadal M., Castellote A.I., Lopez-Sabater M.C., Effect of cold storage on vitamins C and E and fatty acids in human milk. Food Chem., 2008, 106, 65–70.
  • 23. Siegel B.V., Vitamin C and immune response in health and disease. 1993, in: Nutrition and Immunology (ed. D.M. Khuzfled). Plenum Press, New York, pp. 167–196.
  • 24. Silvestre D., Miranda M., Muriach M., Almansa I., Jereno E., Romero F.J., Antioxidant capacity of human milk: effect of thermal conditions for the pasteurization. Acta Paediatr., 2008, 97, 1070–1074.
  • 25. Simpson R.K., Gilmour A., The resistance of Listeria monocytogenes to high hydrostatic pressure in foods. Food Microbiol., 1997, 14, 567–573. 26. Stolarczyk A., Socha P., Tłuszcze w żywieniu niemowląt. Nowa Pediatria, 2002, 3, 200–203 (in Polish).
  • 27. Tewari G, Jayas D.S., Holley R.A., High pressure processing of foods: an overview. Sci. Aliments., 1999, 19, 619–661.
  • 28. Tully D.B., Jones F., Tully M.R., Donor Milk: What’s in It and What’s Not. J. Hum. Lact., 2001, 17, 152–155.
  • 29. Turoli D., Testolin G., Zanini R., Bellu R., Determination of oxidative status in breast and formula milk. Acta Paediatr., 2004, 93, 1569–1574.
  • 30. Van Gysel M., Cossey V., Fieuws S., Schuermans A., Impact of pasteurization on the antibacterial of human milk. Eur. J. Pediatr., 2012, 171, 1231–1237.
  • 31. Van Zoeren-Grobben D., Schrijver J., Van den Berg H., Berger H.M., Human milk vitamin content after pasteurization, storage or tube feeding. Arch. Dis. Child., 1987, 62, 161–165.
  • 32. Viazis S., Farkas B.E., Allen J.C., Effects of high pressure processing on immunoglobulin A and lysozyme activity in human milk. J. Hum. Lact., 2007, 23, 253–261.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.agro-05ee9b9d-47c5-4dfe-a03c-742f2f5bc5d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.